Automated Reasoning

 in and about the Cloud, plus Applications in CryptographyRod Chapman, Senior Principal Applied Scientist, AWS

AR Success at Amazon...

How come AR has been successful at Amazon?

Some possible answers...

1. Trust

The ability to make justified and universal claims of correctness for our users' applications, their data, and our infrastructure...

Universal? "For all users, for all buckets, for all requests, for all possible VPCs, property P is true..."

AR Success at Amazon...

How come AR has been successful at Amazon?

Some possible answers...

1. Trust (continued...)

AR also produces finite proofs about infinite systems.
Example: Pythagoras' theorem. A short proof (well...several proofs) about an infinite number of right-angle triangles...

The catch: soundness of verification requires discipline, determination and persistence...

AR Success at Amazon...

How come AR has been successful at Amazon?
Some possible answers...

2. Scale

At "Cloud Scale" there are no corner-cases...
Verification by "Appeal to unlikely things not happening" does not work!
Example: In 2021, Amazon Simple Storage Service (S3) was responding to more than 10 Million requests..
...per second.

More recent Scale metrics

Supporting "Prime Day" 2023...

- Amazon Elastic Block Store (EBS) handled 15.35 Trillion requests and 764 Petabytes of data transfer per day...
- Amazon DynamoDB peaked at 126 Million request per second...
- Amazon CloudFront handled a peak load of over 500 Million HTTP requests per minute.
- Amazon Simple Queue Service (SQS) peaked at 86 Million requests per second.

AR Success at Amazon...

How come AR has been successful at Amazon?

Some possible answers...
3. Listening to Customers...

Don't try to verify "Everything..."

Listen to customers, and concentrate on what they care most about.
Verify properties (but don't sacrifice soundness...)

Examples of customer-facing features

Examples of customer-facing features

Examples of customer-facing features

Note: You can grant access to specific users after you create the bucket.

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, or both. In order to ensure that public access to all your S3 buckets and objects is blocked, turn on Block all public access. These settings apply only to this bucket. AWS recommends that you turn on Block all public access, but before applying any of these settings, ensure that your applications will work correctly without public access. If you require some level of public access to your buckets or objects within, you can customize the individual settings below to suit your specific storage use cases. Learn more π
\checkmark Block all public access
Turning this setting on is the same as turning on all four settings below. Each of the following settings are independent of one another.

Block public access to buckets and objects granted through new access control lists (ACLs)
S3 will block public access permissions applied to newly added buckets or objects, and prevent the creation of new public access ACLs for existing buckets and objects. This setting doesn't change any existing permissions that allow public access to $\mathrm{S3}$ resources using ACLs.
\square Block public access to buckets and objects granted through any access control lists (ACLs)
S3 will ignore all ACLs that grant public access to buckets and objects.
\square Block public access to buckets and objects granted through new public bucket policies
S3 will block new bucket policies that grant public access to buckets and objects. This setting doesn't change any existing policies that allow public access to S3 resources.

Amazon S3 > customer-credit-card-information

Amazon S3 > customer-credit-card-information

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, or both. In order to ensure that public access to all your S3 buckets and objects is blocked, turn on Block all public access. These settings apply only to this bucket. AWS recommends that you turn on Block all public access, but before applying any of these settings, ensure that your applications will work correctly without public access. If you require some level of public access to your buckets or objects within, you can customize the individual settings below to suit your specific storage use cases. Learn more \square

\checkmark Block all public access

Turning this setting on is the same as turning on all four settings below. Each of the following settings are independent of one another.Block public access to buckets and objects granted through new access control lists (ACLs)
S3 will block public access permissions applied to newly added buckets or objects, and prevent the creation of new public access ACLs for existing buckets and objects. This setting doesn't change any existing permissions that allow public access to S 3 resources using ACLs.

Block public access to buckets and objects granted through any access control lists (ACLs)
S3 will ignore all ACLs that grant public access to buckets and objects.Block public access to buckets and objects granted through new public bucket policies
S3 will block new bucket policies that grant public access to buckets and objects. This setting doesn't change any existing policies that allow public access to S3 resources.

Amazon S3

Buckets

Batch operations

Block public access (account settings)

Feature spotlight

Block public access (account settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, or both. In order to ensure that public access to all your $\mathrm{S3}$ buckets and objects is blocked, turn on Block all public access. These settings apply account-wide for all current and future buckets. AWS recommends that you turn on Block all public access, but before applying any of these settings, ensure that your applications will work correctly without public access. If you require some level of public access to your buckets or objects, you can customize the individual settings below to suit your specific storage use cases. Learn more \square

Block all public access

On

- Block public access to buckets and objects granted through new access control lists (ACLs) On

Block public access to buckets and objects granted through any access control lists (ACLs) On

Block public access to buckets and objects granted through new public bucket policies On

Block public and cross-account access to buckets and objects through any public bucket policies On

AWS product categories

Cloud Financial Management

AWS product categories

N	जू	口100	(1)
Analytics	Application Integration	Blockchain	Business Applications
淢			$\sqrt{7}$
Cloud Financial Management	Compute	Containers	Customer Engagement
ϑ	K9	5	
Database	Developer Tools	End User Computing	Front-End Web \& Mobile
$\stackrel{\ominus}{\oplus}$	8	(0y)	
Game Tech	Internet of Things	Machine Learning	Management \& Governance
$\square \sqrt{ }$	5	హం	
Media Services	Migration \& Transfer	Networking \& Content Delivery	Quantum Technologies
Robotics	Satellite	Security, Identity \& Compliance	Serverle
	\square		
Storage	VR \& AR		

Scientists at Principal level or above

Muhammad
Naveed

Cezara
Drăgoi

(o)
View Badge Pho
Jaco Geldenhuys

Delmas

Rustan
Leino

Andrew Gacek

Serdar
Tasiran

Rajeev Joshi

Zvonimir
Rakamaric

CEDAR

AR and Cryptography

AR and Cryptography

Let's concentrate on Software and its verification for now...
How come crypto software is so hard to get right?

1. Correctness?
2. Performance? (owing to scale, this means $\$ \$ \$$)
3. Side-Channel freedom?
4. Longevity?
"All of the above please!"

AR and Cryptography

Emerging Trends...

Things I've noticed in the last few years...

1. "Formal is Normal"

Crypto research papers proposing new thing X come with mathematical proofs of X^{\prime} s security properties...

At many levels... pure Math stuff, security properties, formal specification languages, protocols, code...

Will future RFCs have formal specification as the one and only notation?

AR and Cryptography

Emerging Trends...

Things I've noticed in the last few years...
2. "Joined up Formal"

Refinement proofs? Verified compilation?
"Joins up" proofs of math stuff, with protocols, and code...
Problem: where to "draw the line" around the formal model? HL programming language, ISA, micro-arch, transistors...

AR and Cryptography

Emerging Trends...

Things I've noticed in the last few years...
3. "Formal and Fast" not "Formal xor Fast"

Traditional myth: "Formal is Slow..."
Or... put another way... "Our production code has to go really really fast (and run on bare-metal), so we can only use C, C, C, any language that starts with C , or assembly if we're really desperate..."

"Formal and Fast"???

Introducing... s2n-bignum.
:三 README.md

s2n-bignum

This is a collection of bignum arithmetic routines designed for cryptographic applications. All routines are written in pure machine code, designed to be callable from C and other high-level languages, with separate but API-compatible versions of each function for 64-bit x86 (x86_64) and ARM (aarch64). Each function is written in a constant-time style to avoid timing side-channels, and is accompanied by machine-checked formal proof that its mathematical result is correct, based on a formal model of the underlying machine.

s2n-bignum - what do I get?

- Functions for elliptic curve field elements, point operations, and (point \times scalar) multiplication...
- ...for each of the curves NIST P-256, P-384, P-521, plus secp256k1, SM2, and curve25519...
- AND... primitive operations (e.g. ${ }^{\text {b }}$ mod n) for RSA cryptosystem with 2048, 3072, and 4096 bit modulus n.

s2n-bignum - what do I get?

- ...implemented for x86_64 and ARM64, for at least 2 micro-architectures each...
- ... with proofs of functional correctness in HOL-Lite...
- ... with Apache-2.0 or ISC licence
- Available at https://github.com/awslabs/s2n-bignum

s2n-bignum - for example

- in include/s2n-bignum.h
// Add modulo p_25519, z := (x + y) mod p_25519, // assuming x and y reduced
// Inputs x[4], y[4]; output z[4]
extern void bignum_add_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);

s2n-bignum - for example...

- in arm/curve25519/bignum_add_p25519.S

// Add as [d3; d2; d1; d0] $=x+y$; since we assume // x, y < 2^255 - 19 this sum fits in 256 bits

1dp
1dp
adds co, c1, [y]
adcs d1, d1, c1
1dp d2, d3, [x, \#16]
1dp c0, c1, [y, \#16]
adcs d2, d2, c0
adc d3, d3, c1
// Now $x+y>=2 \wedge 255-19<=>x+y+(2 \wedge 255+19)>=2 \wedge 256$
// Form [c3; c2; c1; c0] = (x+y) + (2^255+19), with CF // for the comparison

```
mov c3, #0x8000000000000000
adds c0, d0, #19
adcs c1, d1, xzr
adcs c2, d2, xzr
adcs c3, d3, c3
```

// If the comparison holds, select [c3; c2; c1; c0].
// There's no need to mask it since in this case it // is $((x+y)+(2 \wedge 255+19))-2 \wedge 256$ because the
// top carry is lost, which is the
// desired (x + y) - (2^255 - 19).

cse 1	$d 0$,	$d 0$,	$c 0$,
cse1	$d 1$,	d1,	$c 1$,
cse 1	$d 2$,	$d 2$,	$c 2$,
cs			
cse1	$d 3$,	$d 3$,	$c 3$,
cc			

// Store the result

```
stp d0, d1, [z]
stp d2, d3, [z, #16]
```

ret

s2n-bignum - for example...

- in arm/proofs/bignum_add_p25519.ml

let p_25519 = new_definition `p_25519 = \(57896044618658097711785492504343953926634992332820282019728792003956564819949 `\) i,
let BIGNUM_ADD_P25519_CORRECT = time prove
($!\mathrm{z} \times \mathrm{y} \mathrm{m} \mathrm{n}$ pc.
nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm
(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc / read PC s = word pc $/ \backslash$
C_ARGUMENTS [z; $x ; y] s / \backslash$
bignum_from_memory $(x, 4) \mathrm{s}=\mathrm{m} / \backslash$
bignum_from_memory $(y, 4) s=n)$
($\backslash \mathrm{s}$. read PC s = word $(p c+0 \times 4 c) / \backslash$
($\mathrm{m}<\mathrm{p} _25519$ / $\mathrm{n}<\mathrm{p} _25519$
==> bignum_from_memory $(z, 4) \mathrm{s}=(\mathrm{m}+\mathrm{n})$ MOD p_25519))
(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10],,
MAYCHANGE SOME_FLAGS,,
MAYCHANGE [memory :> bignum $(2,4)])^{`}$,
(Plus many lines deleted...)

s2n-bignum - for example...

- in arm/proofs/bignum_add_p25519.ml
let p_25519 = new_definition `p_25519 = 57896044618658097711785492504343953926634992 332820282019728792003956564819949 `,

let BIGNUM_ADD_P25519_CORRECT = time prove

(`! x y mnpc. nonoverlapping (word pc,0x50) (z,8 * 4) ==> ensures arm (\(\backslash \mathrm{s}\). aligned_bytes_loaded s (word pc) bignum_add_p25519_mc / read PC \(\mathrm{s}=\) word pc \(/\) C_ARGUMENTS \([z ; x ; y] s / \backslash\) bignum_from_memory (\(x, 4\)) s = m / bignum_from_memory \((\mathrm{y}, 4) \mathrm{s}=\mathrm{n})\) (\(\backslash \mathrm{s}\). read PC s = word \((\mathrm{pc}+0 \times 4 \mathrm{c}) / \backslash\) (\(\mathrm{m}<\mathrm{p} _25519\) / \(n<\mathrm{p} _25519\) ==> bignum_from_memory \((z, 4) s=(m+n)\) MOD p_25519)) (MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10],, MAYCHANGE SOME_FLAGS MAYCHANGE [memory :> bignum \((z, 4)])^{`}\)

s2n-bignum - for example...

- in arm/proofs/bignum_add_

let p_25519 = new_definition `p_25519 = 578960446186580

Read 4 64-bit words from

let BIGNUM_ADD_P25519_CORRECT = time prove
($!\mathrm{z} \times \mathrm{y} \mathrm{m} \mathrm{n}$ pc.
nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm
(\s. aligned_bytes_loaded s (word pc) bignum_ read PC $s=$ word $p c / \backslash$
C_ARGUMENTS $[z ; x ; y] s / \backslash$ memory address x, and interpret as a little-endian Integer m. Same for y and n
bignum_from_memory $(x, 4) \mathrm{s}=\mathrm{m} / \backslash$
bignum_from_memory ($\mathrm{y}, 4$) $\mathrm{s}=\mathrm{n}$)

($\backslash \mathrm{s}$. read PC s = word ($\mathrm{pc}+0 \times 4 \mathrm{c}$) $/ \backslash$

(m < p_25519 / n < p_25519
==> bignum_from_memory $(z, 4) s=(m+n)$ MOD p_25519))
(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10],
MAYCHANGE SOME_FLAGS,,
MAYCHANGE [memory :> bignum $(z, 4)]$)
(Plus many lines deleted...)

s2n-bignum - for example...

- in arm/proofs/bignum_add_p25519.ml

let p_25519 = new_definition `p_25519 = \(57896044618658097711785492504343953926634992332820282019728792003956564819949 `\) i,
let BIGNUM_ADD_P25519_CORRECT = time prove
(`! $\mathrm{z} \times \mathrm{y} \mathrm{m} \mathrm{n} \mathrm{pc}$.
nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm
(\s. aligned_bytes_loaded s (word pc) bignum_add_p read PC s = word pc $/ \backslash$
C_ARGUMENTS $[z ; x ; y] s / \backslash$
bignum_from_memory $(x, 4) \mathrm{s}=\mathrm{m} / \backslash$ bignum_from_memory $(y, 4) s=n)$
($\backslash \mathrm{s}$. read PC s $=$ word $(p c+0 \times 4 c) / \backslash$

Precondition: if m and n and both reduced modulo p...

m < p_25519 / n < p_25519

==> bignum_from_memory $(z, 4) \mathrm{s}=(\mathrm{m}+\mathrm{n})$ MOD p_25519))
(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10],,
MAYCHANGE SOME_FLAGS,,
MAYCHANGE [memory :> bignum $(z, 4)])^{`}$
(Plus many lines deleted...)

s2n-bignum - for example...

- in arm/proofs/bignum_add_p25519.ml

let p_25519 = new_definition `p_25519 = \(57896044618658097711785492504343953926634992332820282019728792003956564819949 `\) i,
let BIGNUM_ADD_P25519_CORRECT = time prove
($!\mathrm{z} \times \mathrm{y} \mathrm{m} \mathrm{n}$ pc.
nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm
(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc / read PC $s=$ word $p c / \backslash$
C_ARGUMENTS $[z ; x ; y] s / \backslash$
bignum_from_memory $(x, 4) \mathrm{s}=\mathrm{m} / \backslash$
bignum_from_memory $(y, 4) s=n)$
($\backslash \mathrm{s}$. read PC s = word $(\mathrm{pc}+0 \times 4 \mathrm{c}) / \backslash$
(m < p_25519 / n < p_25519
==> bignum_from_memory $(z, 4) \mathrm{s}=(\mathrm{m}+\mathrm{n})$ MOD p_25519))
(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10],"
MAYCHANGE SOME_FLAGS,,
MAYCHANGE [memory :> bignum $(z, 4)$]) `,
(Plus many lines deleted...)

s2n-bignum - performance?

- Performance of s2n-bignum is competitive or better than any other implementation, on most x86 and ARM64 micro-architectures...
- For example...Times for 384-bit modular inverse at bit densities 2-63
- "bit density X" = "probability that randomly chosen input bit is a 1 is $X / 64^{\prime \prime}$

MODULAR INVERSE EXECUTION TIME VERSUS BIT DENSITY

- OpenSSL 3.0

MODULAR INVERSE EXECUTION TIME VERSUS BIT DENSITY

- s2n-bignum
- OpenSSL 3.0

s2n-bignum - performance?

- How about RSA performance on Graviton-2 (64-bit ARM neoverse_n1 core)?
- Sign operations per second

Modulus size bits	Ops per second $1^{\text {st }}$ January 2023	Ops per second $28^{\text {th }}$ September 2023
2048	299	582
3072	96	139
4096	42	92

AR and Cryptography

Some Current Challenges...

Hybrid verification: what's the optimal mix of static and dynamic verification?
Will performance of PQ algorithms be a problem @ Cloud Scale?
PQC on low-speed, low-power "edge" devices?

AR and Cryptography

Some Current Challenges...

The devil-in-the-detail: where do we draw the line? How to cope with microarchitectural variation and defects?

Longevity... will notation X and/or tool Y still be viable in 20 years?
Can we achieve a "separation of concerns" between crypto mathematicians and software engineers? Very few people are world-class in both disciplines...

Takeaways
Automated Reasoning about and of the Cloud
Significant advances in reasoning about the correctness of our infrastructure and services.

Automated Reasoning in the Cloud
Got a big proof? Bring us your workloads!

