
Automated Reasoning
in and about the Cloud, plus
Applications in Cryptography
Rod Chapman, Senior Principal Applied Scientist, AWS

FLoC

SPLASH /
OOPSLA

PLDI

Cube

AR Success at Amazon…

How come AR has been successful at Amazon?

Some possible answers…

1. Trust

The ability to make justified and universal claims of correctness for our
users’ applications, their data, and our infrastructure…

Universal? “For all users, for all buckets, for all requests, for all possible
VPCs, property P is true…”

AR Success at Amazon…

How come AR has been successful at Amazon?

Some possible answers…

1. Trust (continued…)
AR also produces finite proofs about infinite systems.

Example: Pythagoras’ theorem. A short proof (well…several proofs) about
an infinite number of right-angle triangles…

The catch: soundness of verification requires discipline, determination and
persistence…

AR Success at Amazon…
How come AR has been successful at Amazon?

Some possible answers…

2. Scale

At ”Cloud Scale” there are no corner-cases…
Verification by “Appeal to unlikely things not happening” does not work!

Example: In 2021, Amazon Simple Storage Service (S3) was responding to
more than 10 Million requests…

…per second.

More recent Scale metrics
Supporting “Prime Day” 2023…

• Amazon Elastic Block Store (EBS) handled 15.35 Trillion requests and

764 Petabytes of data transfer per day…

• Amazon DynamoDB peaked at 126 Million request per second…

• Amazon CloudFront handled a peak load of over 500 Million HTTP

requests per minute.

• Amazon Simple Queue Service (SQS) peaked at 86 Million requests

per second.

(Data from https://aws.amazon.com/blogs/aws/prime-day-2023-powered-by-aws-all-the-numbers/)

AR Success at Amazon…

How come AR has been successful at Amazon?

Some possible answers…

3. Listening to Customers…

Don’t try to verify “Everything…”

Listen to customers, and concentrate on what they care most about.

Verify properties (but don’t sacrifice soundness…)

Examples of customer-facing features

VPC Reachability
Analyzer

Examples of customer-facing features

Managed
Config Rules

VPC Reachability
Analyzer

Examples of customer-facing features

Managed
Config Rules

VPC Reachability
Analyzer

S3 Block
Public Access

Examples of customer-facing features

Managed
Config Rules

VPC Reachability
Analyzer

S3 Block
Public Access

IAM Access
Analyzer

AWS product categories

AWS product categories

Practically every area
touched by automated
reasoning in some way

Scientists at Principal level or
above

Muhammad
Naveed

Mike
Hicks

John
Backes

Sean
McLaughlin

Dominic
Mulligan

Tancrède
Lepoint

Gustavo
Petri

Leo
de Moura

Cezara
Drăgoi

Aws
Albarghouthi

AWS Zelkova

AWS Tiros

AWS Shuttle

CEDAR

P

AMZN Dust

AR and Cryptography

AR and Cryptography

Let’s concentrate on Software and its verification for now…

How come crypto software is so hard to get right?

1. Correctness?
2. Performance? (owing to scale, this means $$$)
3. Side-Channel freedom?
4. Longevity?

“All of the above please!”

AR and Cryptography

Emerging Trends…

Things I’ve noticed in the last few years…

1. “Formal is Normal”
Crypto research papers proposing new thing X come with mathematical proofs of X’s
security properties…

At many levels… pure Math stuff, security properties, formal specification languages,
protocols, code…

Will future RFCs have formal specification as the one and only notation?

AR and Cryptography

Emerging Trends…

Things I’ve noticed in the last few years…

2. “Joined up Formal”
Refinement proofs? Verified compilation?

“Joins up” proofs of math stuff, with protocols, and code…

Problem: where to “draw the line” around the formal model?
HL programming language, ISA, micro-arch, transistors…

AR and Cryptography
Emerging Trends…

Things I’ve noticed in the last few years…

3. “Formal and Fast” not “Formal xor Fast”

Traditional myth: “Formal is Slow…”

Or… put another way… “Our production code has to go really
really fast (and run on bare-metal), so we can only use C, C, C,
any language that starts with C, or assembly if we’re really
desperate…”

“Formal and Fast”???

Introducing… s2n-bignum.

s2n-bignum – what do I get?

• Functions for elliptic curve field elements, point operations, and
(point x scalar) multiplication…

• ...for each of the curves NIST P-256, P-384, P-521, plus secp256k1, SM2,
and curve25519…

• AND… primitive operations (e.g. ab mod n) for RSA cryptosystem with 2048,
3072, and 4096 bit modulus n.

s2n-bignum – what do I get?

• …implemented for x86_64 and ARM64, for at least 2 micro-architectures
each…

• … with proofs of functional correctness in HOL-Lite…

• … with Apache-2.0 or ISC licence

• Available at https://github.com/awslabs/s2n-bignum

https://github.com/awslabs/s2n-bignum

s2n-bignum – for example…

• in include/s2n-bignum.h

// Add modulo p_25519, z := (x + y) mod p_25519,
// assuming x and y reduced
// Inputs x[4], y[4]; output z[4]

extern void bignum_add_p25519 (uint64_t z[static 4],
uint64_t x[static 4],
uint64_t y[static 4]);

s2n-bignum – for example…

• in arm/curve25519/bignum_add_p25519.S
// Add as [d3; d2; d1; d0] = x + y; since we assume
// x, y < 2^255 – 19 this sum fits in 256 bits

ldp d0, d1, [x]
ldp c0, c1, [y]
adds d0, d0, c0
adcs d1, d1, c1
ldp d2, d3, [x, #16]
ldp c0, c1, [y, #16]
adcs d2, d2, c0
adc d3, d3, c1

// Now x+y >= 2^255 - 19 <=> x+y+(2^255+19) >= 2^256
// Form [c3; c2; c1; c0] = (x+y) + (2^255+19), with CF
// for the comparison

mov c3, #0x8000000000000000
adds c0, d0, #19
adcs c1, d1, xzr
adcs c2, d2, xzr
adcs c3, d3, c3

// If the comparison holds, select [c3; c2; c1; c0].
// There's no need to mask it since in this case it
// is ((x + y) + (2^255 + 19)) - 2^256 because the
// top carry is lost, which is the
// desired (x + y) - (2^255 - 19).

csel d0, d0, c0, cc
csel d1, d1, c1, cc
csel d2, d2, c2, cc
csel d3, d3, c3, cc

// Store the result

stp d0, d1, [z]
stp d2, d3, [z, #16]

ret

s2n-bignum – for example…

• in arm/proofs/bignum_add_p25519.ml
let p_25519 = new_definition `p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;;

let BIGNUM_ADD_P25519_CORRECT = time prove
(`!z x y m n pc.

nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm

(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc /\
read PC s = word pc /\
C_ARGUMENTS [z; x; y] s /\
bignum_from_memory (x,4) s = m /\
bignum_from_memory (y,4) s = n)

(\s. read PC s = word (pc + 0x4c) /\
(m < p_25519 /\ n < p_25519
==> bignum_from_memory (z,4) s = (m + n) MOD p_25519))

(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10] ,,
MAYCHANGE SOME_FLAGS ,,
MAYCHANGE [memory :> bignum(z,4)])`,

(Plus many lines deleted…)

s2n-bignum – for example…
• in arm/proofs/bignum_add_p25519.ml

let p_25519 = new_definition `p_25519 =
57896044618658097711785492504343953926634992
332820282019728792003956564819949`;;
let BIGNUM_ADD_P25519_CORRECT = time prove
(`!z x y m n pc.

nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm

(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc /\
read PC s = word pc /\
C_ARGUMENTS [z; x; y] s /\
bignum_from_memory (x,4) s = m /\
bignum_from_memory (y,4) s = n)

(\s. read PC s = word (pc + 0x4c) /\
(m < p_25519 /\ n < p_25519
==> bignum_from_memory (z,4) s = (m + n) MOD p_25519))

(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10] ,,
MAYCHANGE SOME_FLAGS ,,
MAYCHANGE [memory :> bignum(z,4)])`,

(Plus many lines deleted…)

s2n-bignum – for example…

• in arm/proofs/bignum_add_p25519.ml
let p_25519 = new_definition `p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;;

let BIGNUM_ADD_P25519_CORRECT = time prove
(`!z x y m n pc.

nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm

(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc /\
read PC s = word pc /\
C_ARGUMENTS [z; x; y] s /\

bignum_from_memory (x,4) s = m /\
bignum_from_memory (y,4) s = n)

(\s. read PC s = word (pc + 0x4c) /\
(m < p_25519 /\ n < p_25519
==> bignum_from_memory (z,4) s = (m + n) MOD p_25519))

(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10] ,,
MAYCHANGE SOME_FLAGS ,,
MAYCHANGE [memory :> bignum(z,4)])`,

(Plus many lines deleted…)

Read 4 64-bit words from
memory address x, and

interpret as a little-endian
Integer m. Same for y and n

s2n-bignum – for example…

• in arm/proofs/bignum_add_p25519.ml
let p_25519 = new_definition `p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;;

let BIGNUM_ADD_P25519_CORRECT = time prove
(`!z x y m n pc.

nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm

(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc /\
read PC s = word pc /\
C_ARGUMENTS [z; x; y] s /\
bignum_from_memory (x,4) s = m /\
bignum_from_memory (y,4) s = n)

(\s. read PC s = word (pc + 0x4c) /\

(m < p_25519 /\ n < p_25519
==> bignum_from_memory (z,4) s = (m + n) MOD p_25519))

(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10] ,,
MAYCHANGE SOME_FLAGS ,,
MAYCHANGE [memory :> bignum(z,4)])`,

(Plus many lines deleted…)

Precondition: if m and n and
both reduced modulo p…

s2n-bignum – for example…

• in arm/proofs/bignum_add_p25519.ml
let p_25519 = new_definition `p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;;

let BIGNUM_ADD_P25519_CORRECT = time prove
(`!z x y m n pc.

nonoverlapping (word pc,0x50) (z,8 * 4)
==> ensures arm

(\s. aligned_bytes_loaded s (word pc) bignum_add_p25519_mc /\
read PC s = word pc /\
C_ARGUMENTS [z; x; y] s /\
bignum_from_memory (x,4) s = m /\
bignum_from_memory (y,4) s = n)

(\s. read PC s = word (pc + 0x4c) /\
(m < p_25519 /\ n < p_25519

==> bignum_from_memory (z,4) s = (m + n) MOD p_25519))
(MAYCHANGE [PC; X3; X4; X5; X6; X7; X8; X9; X10] ,,
MAYCHANGE SOME_FLAGS ,,
MAYCHANGE [memory :> bignum(z,4)])`,

(Plus many lines deleted…)

…then memory address z
ends up containing the right

answer!

s2n-bignum – performance?

• Performance of s2n-bignum is competitive or better
than any other implementation, on most x86 and
ARM64 micro-architectures…

• For example…Times for 384-bit modular inverse at bit
densities 2–63
• “bit density X” = “probability that randomly chosen

input bit is a 1 is X/64”

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

EX
EC

U
TI

O
N

 T
IM

E/
N

S

BIT DENSITY OF INPUTS

MODULAR INVERSE EXECUTION TIME VERSUS BIT DENSITY

OpenSSL 3.0

Mean: 32800ns
Standard deviation: 2105ns

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

EX
EC

U
TI

O
N

 T
IM

E/
N

S

BIT DENSITY OF INPUTS

MODULAR INVERSE EXECUTION TIME VERSUS BIT DENSITY

s2n-bignum OpenSSL 3.0

s2n-bignum
Mean: 3485ns

Standard deviation: 8.44ns
Mean speedup factor: 9.41

s2n-bignum – performance?

• How about RSA performance on Graviton-2 (64-bit ARM neoverse_n1 core)?

• Sign operations per second

Modulus size
bits

Ops per second
1st January 2023

Ops per second
28th September 2023

2048 299 582

3072 96 139

4096 42 92

AR and Cryptography

Some Current Challenges…

Hybrid verification: what’s the optimal mix of static and dynamic verification?

Will performance of PQ algorithms be a problem @ Cloud Scale?

PQC on low-speed, low-power ”edge” devices?

AR and Cryptography

Some Current Challenges…

The devil-in-the-detail: where do we draw the line? How to cope with micro-
architectural variation and defects?

Longevity…will notation X and/or tool Y still be viable in 20 years?

Can we achieve a “separation of concerns” between crypto mathematicians
and software engineers? Very few people are world-class in both disciplines…

Takeaways

Automated Reasoning about and of the Cloud

Significant advances in reasoning about the correctness of
our infrastructure and services.

Automated Reasoning in the Cloud

Got a big proof? Bring us your workloads!

