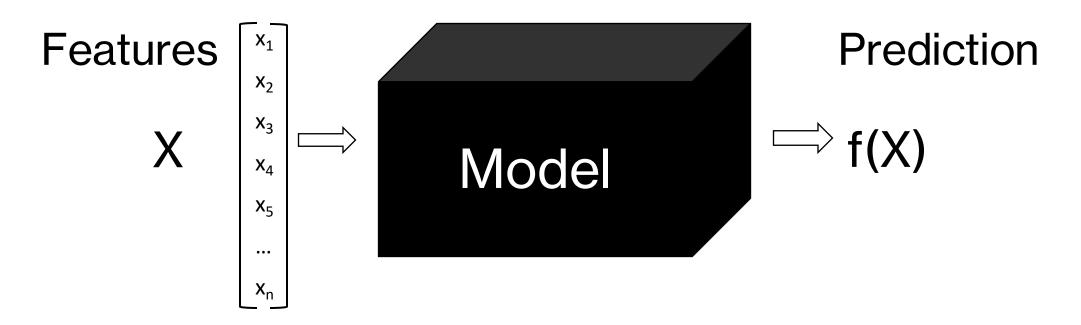
Proving Reliability of Machine Learning Systems using Explainable Al

Dene Brown

What actions can we take to change the outcome and secure the loan?

- Earn more money
- Pay off other loans
- Pay off credit cards
- Move house

Al Black Box Model



- We have no knowledge of the black box model reasoning.
- How do we determine model reliably for critical systems?

Wolf or Husky?

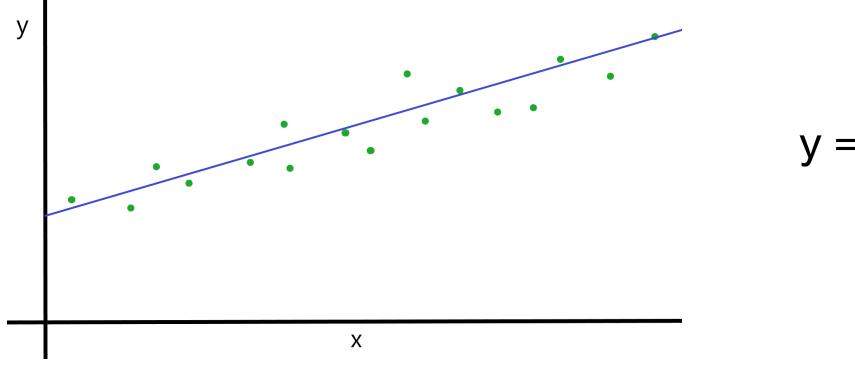
Al Black Box Model



- We have no knowledge of the black box model reasoning.
- How do we determine model reliably for critical systems?
- Is testing the model predictions sufficient?

LIME

LIME is based on a Linear Regression Model



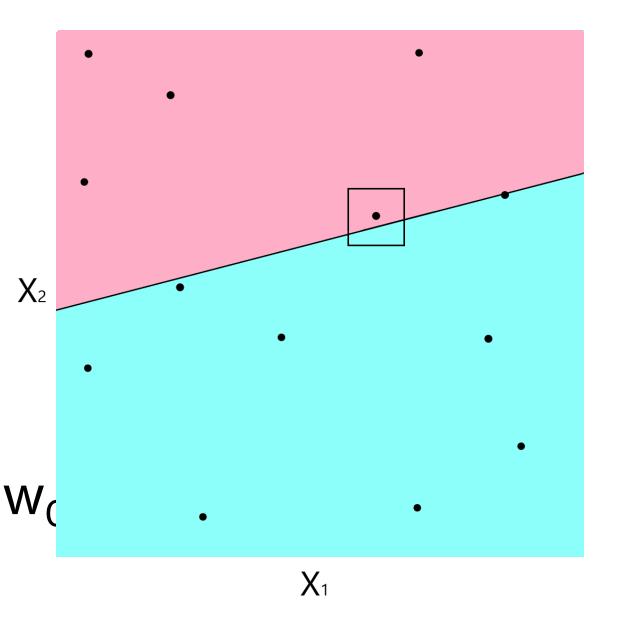
$$y = W_0 + W_1 X$$

$$y = W_0 + W_1X_1 + W_2X_2 + ... + W_nX_n$$

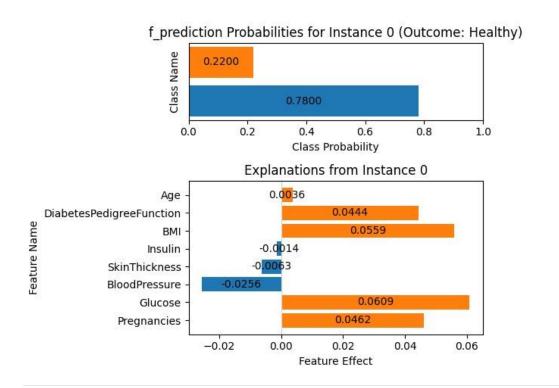
LIME

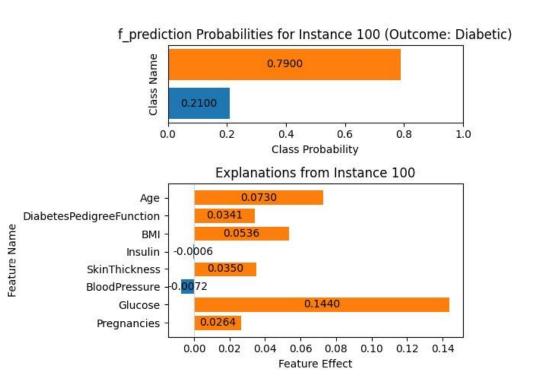
Local Interpretable Model-agnostic Explanations

- 1. Choose point to explain locally.
- 2. Create surrogate data around point using perturbed points in feature space.
- 3. Train weighted linear model using surrogate data.
- 4. Feature importance from linear model coefficients w₁ and w₂.

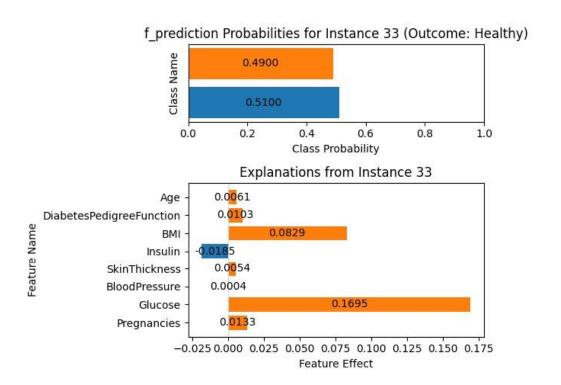


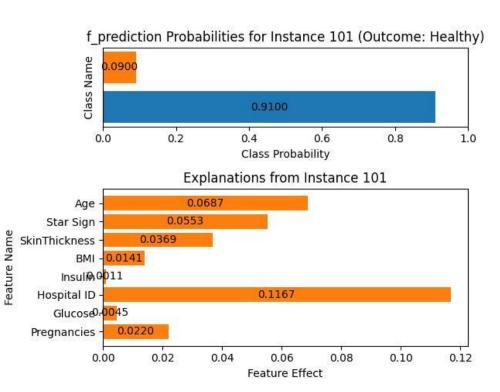
LIME: Diabetes Results 1/3





LIME: Diabetes Results 2/3





LIME: Diabetes Results 3/3

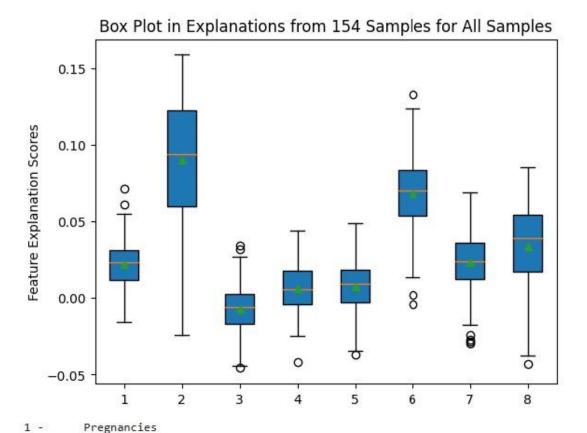
Glucose

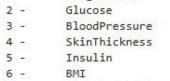
Insulin

BloodPressure

SkinThickness

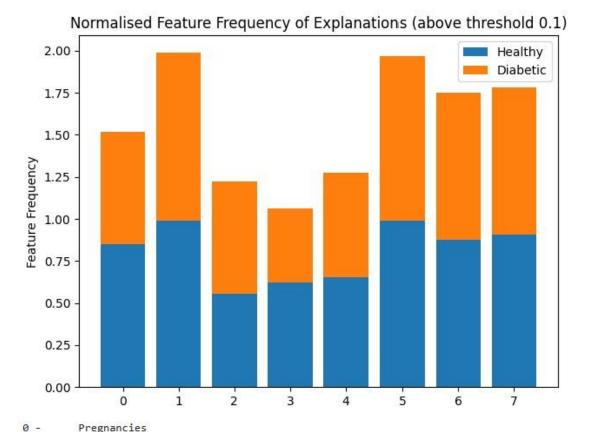
DiabetesPedigreeFunction



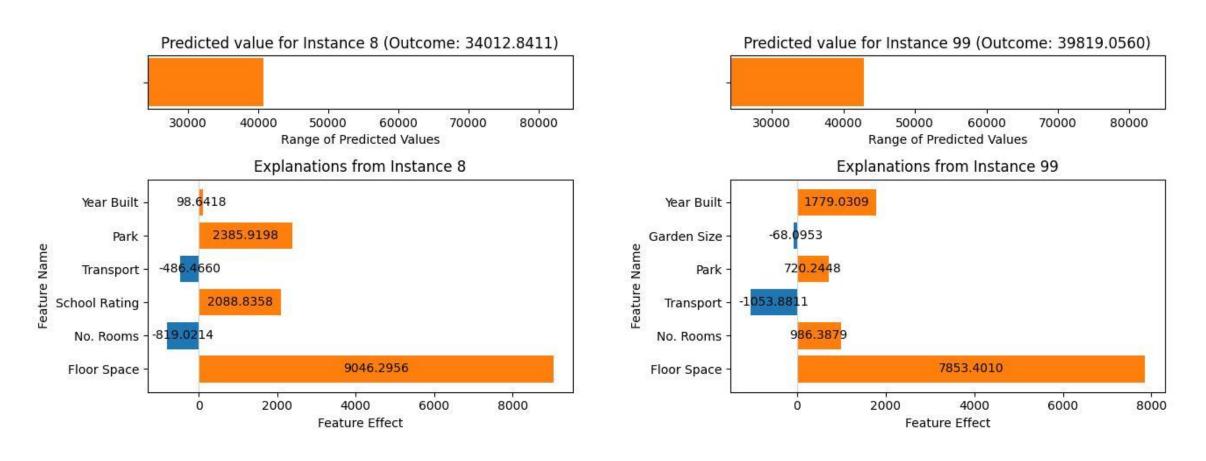


7 - DiabetesPedigreeFunction

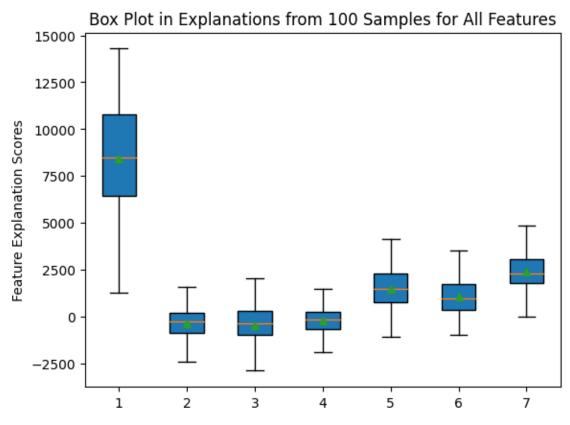
8 - Age



LIME: House Price Results 1/2



LIME: House Price Results 2/2



- 1 Floor Space
- 2 No. Rooms
- 3 School Rating
- 4 Transport
- 5 Park
- 6 Garden Size
- 7 Year Built

Multiple Flavours of LIME

DLIME: Clustering of Real Data Points

ALIME: Auto Encoder to create Synthetic Dataset

UnRAvEL: Gaussian Process

BayesLIME: Baysian Approach

All methods are intended to improve the selection of surrogate data as a way to improve model performance.

Scoped Rules

Scoped Rules (Anchors)

- Anchors are given their name because they 'anchor' the prediction to that of the instance being explained.
- We create perturbations around the instance that could have their outcome predicted by the rule.
- The rules have the format 'if then' that are easy to interpret.
- Each rule comes with a coverage and precision.

Anchors Example: Diabetes

- A Model has been trained to predict if patients will develop diabetes or not (Unhealthy or Healthy).
- Use anchors to explain why one instance is predicted to be Unhealthy.

The following rule with two predicates is generated from the instance:

```
if BMI > 29 and
  Glucose > 120 then
  Predict UNHEALTHY with Precision 90% and Coverage 32%
```

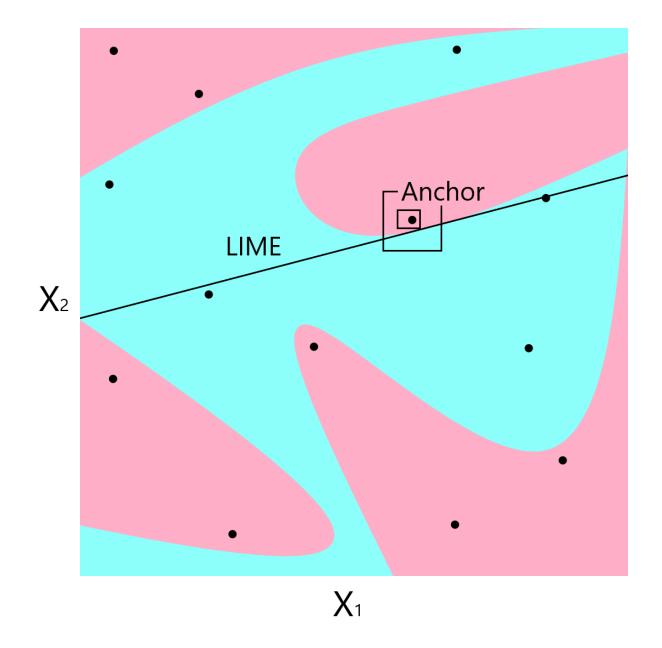
Anchors Visualisation

Coverage: 32%

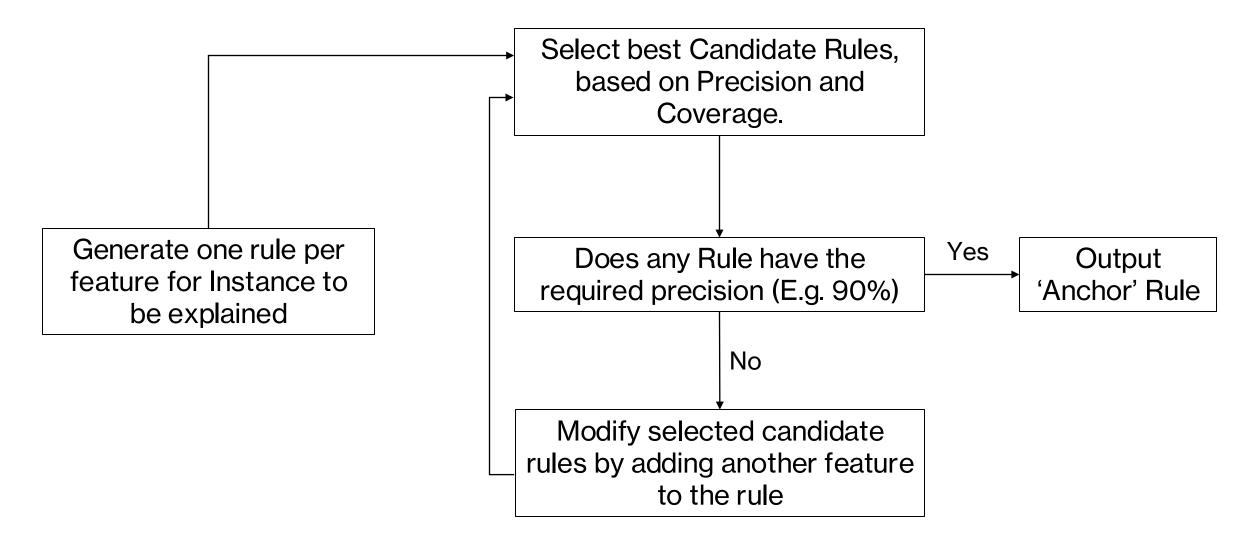
Precision: 90%

A coverage of 32% mean that the anchor rule can apply to 32% of perturbation instances within the perturbation space.

A precision of 90% means of those perturbation instances that the anchor rule can apply to, 90% have their outcome correctly predicted by the anchor rule.



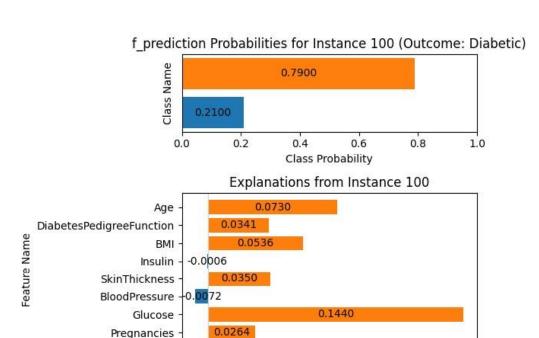
Generating Anchors (Simplified Model)



Generating Anchors Simple Example

Generate one rule per feature	if BMI > 29 then UNHEALTHY Precision = 42%	if Preg > 4 then UNHEALTHY Precision = 15%	If Gluc < 100 then HEALTHY Precision = 28%	If DPF < 0.5 then HEALTHY Precision = 54%
Select best Candidate Rules	if BMI > 29 then UNHEALTHY Precision = 42%			If DPF < 0.5 then HEALTHY Precision = 54%
Precision > 90%?	No			No
Modify selected candidate, by adding feature	if BMI > 29 and Gluc > 120 then UNHEALTHY Precision = 93 %	If BMI > 29 and Preg > 3 then UNHEALTHY Precision = 53%	if DPF < 0.5 and Gluc < 100 then HEALTHY Precision = 91 %	if DPF < 0.5 and BMI < 27 then HEALTHY Precision = 72%

Anchors Results Compared to LIME 1/2



0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Feature Effect

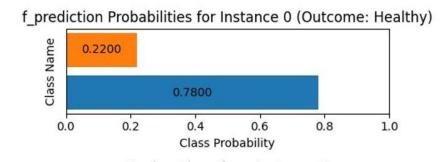
Instance 100

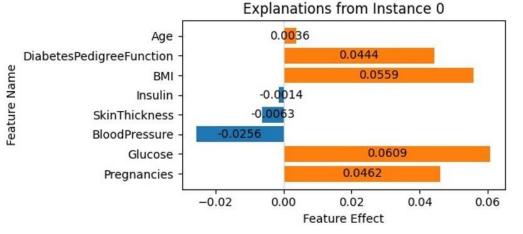
Age DPF BMI Insulin Skin BP Glucose Preg 50 0.62 **34** 0 35 72 **148** 3

Rule 1

```
if BMI > 29 and
   Glucose > 120 then
   Predict UNHEALTHY with Precision 90%
   and Coverage 32%
```

Anchors Results Compared to LIME 2/2





Instance 0

Age DPF BMI Insulin Skin BP Glucose Preg 31 0.35 24 0 29 66 85 1

Rule 2

Precision and Coverage Trade Off with Anchors

- Anchors with 2 to 4 predicates can be easily understood, above this rules are difficult to interpret.
- Increasing the number of predicates improves precision, the accuracy of the rule.
- A high number of predicates reduces the coverage, the scope of the rule.

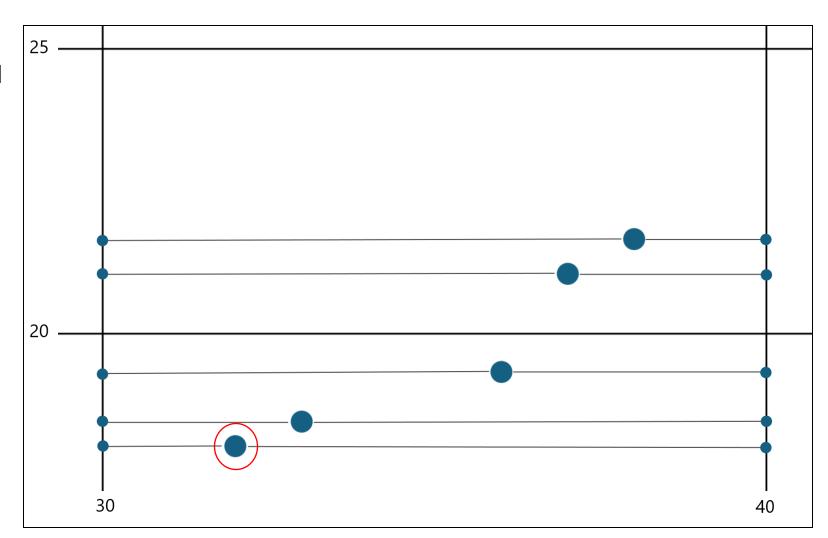
Accumulated Local Effects (ALE)

Accumulated Local Effects

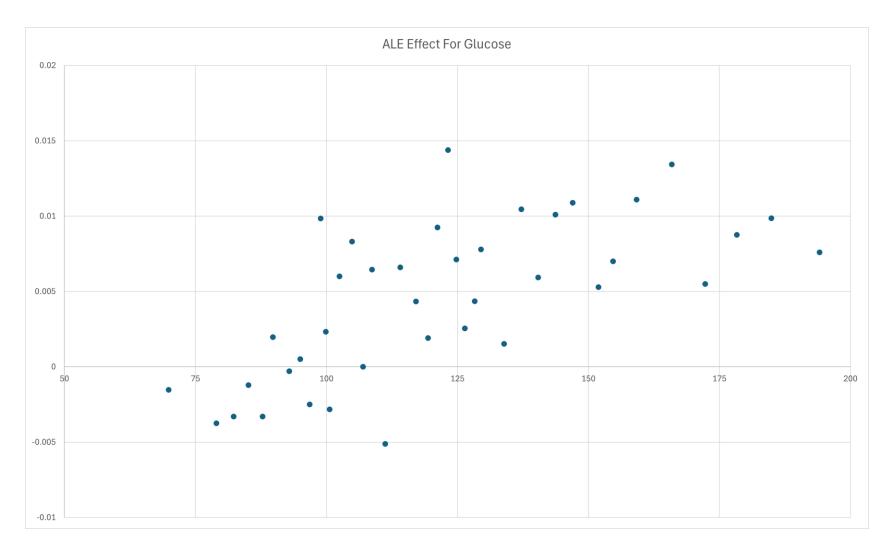
- ALE is a Global Modeling Method, despite its name.
- ALE is a method that can used with correlated features.
- It gives the effect of a feature has on the outcome, over the full range of the features values.

ALE: Theory

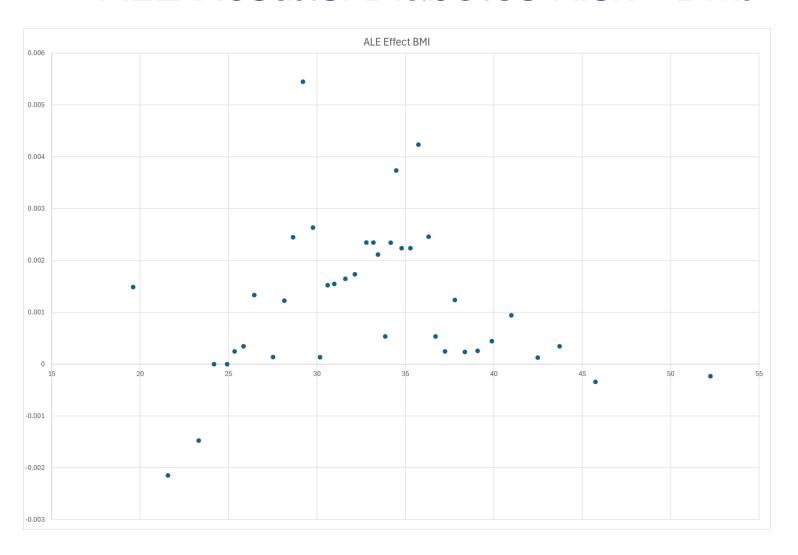
- 1. Choose Feature to be Explained
- 2. Divide Feature into Ranges
- 3. Select an instance:
- Replace value of feature of interest with upper and lower bounds of the range.
- Calculate difference in outcomes from new points at the bounds (Local Effect).
- 4. Repeat for all instances in the range and take average (Accumulated Local Effect).



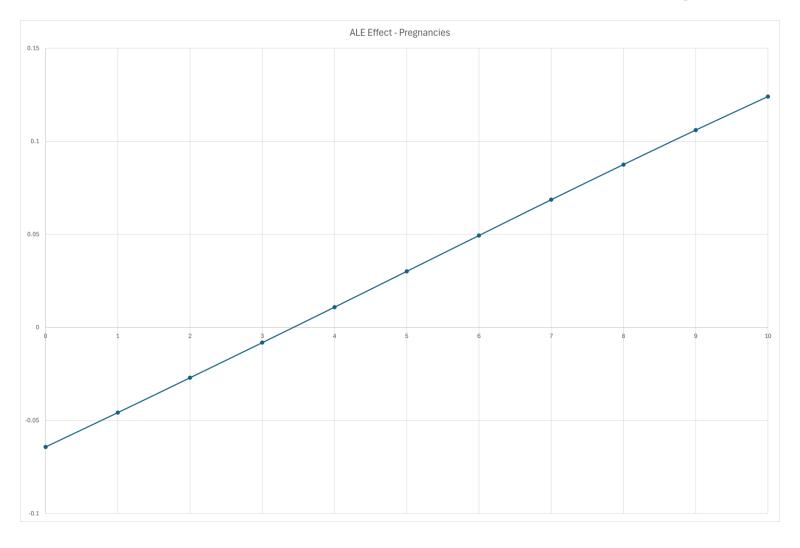
ALE Results: Diabetes Risk - Glucose



ALE Results: Diabetes Risk - BMI



ALE Results: Diabetes Risk - No. Pregnancies



Current Research

Current Academic Research in Explainable Al

- Explainable AI is currently an important topic in academic research.
- Many models from research are accompanied by their own explainability models, many using the methods explained here.
- Model specific explainability methods are also used, these can provide greater insight than model agnostic methods.
- Many of these explainability methods are for Neural Network models.

Summary and Questions

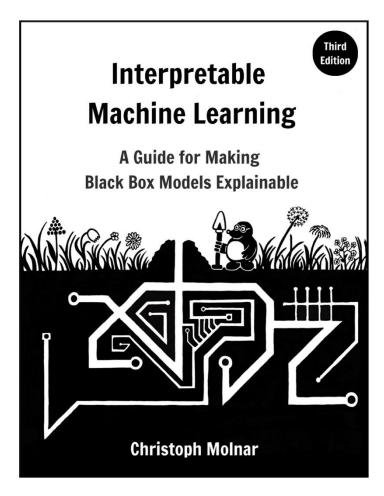
Summary 1/2

- Explainable or Interpretable Machine learning has been around for over a decade.
- Explainable AI is relatively easy to implement with lots of available open-source software.
- Model agnostic methods can interpret any model, with having to understand the workings of the model.
- There are both Global (ALE) and Local methods (LIME).
- Model specific methods can perhaps provide greater insight.

Summary 2/2

- Machine learning models are being implemented in High Integrity Systems.
- Explainable AI can provide insights to how these models are reasoning.
- Can Explainable AI improve the quality and reliability of the models?
- Should Explainable AI become a requirement in standards for critical systems based on Machine Learning?
- Yes, and Yes (unless other methods better appear).

Questions etc.



christophm.github.io/interpretable-ml-book/