Overview		Details	Wrap-up
000000	000000	000000	000

Wrenna Robson

Royal Holloway, University of London

High Integrity Software Conference, 17th October 2023

Overview	Problem	Details	Wrap-up
000000	0000000	000000	000
Table of Contents			

1 Overview

- Novel cryptography
- Verification
- 2 The current problem as I see it
 - The state-of-the-art
 - The nature of the problem
- 3 Details of structured reasoning proposals

4 Wrap-up

Overview	Problem	Details	Wrap-up
●○○○○○	ooooooo	000000	000
Verifying novel cryptog	raphy: forging a forward	l path	

The aim of this talk is to sketch answers to the following:

What is novel cryptography, in general and in specific?

Overview	Problem	Details	Wrap-up
			000

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?

Overview		Details	
•00000	000000	000000	000

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?

Overview		Details	
00000	000000	000000	000
		· · ·	

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?
- How could this role be improved?

Overview		Details	
00000	000000	000000	000
		· · ·	

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?
- How could this role be improved?

The aim of this talk is to sketch answers to the following:

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?
- How could this role be improved?

I intend to circle round these points in a zoomed-out sense, and then in greater details.

The aim of this talk is to sketch answers to the following:

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?
- How could this role be improved?

I intend to circle round these points in a zoomed-out sense, and then in greater details. But I'll say, off the bat: I'm sketching a vision, not delivering a solution.

The aim of this talk is to sketch answers to the following:

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?
- How could this role be improved?

I intend to circle round these points in a zoomed-out sense, and then in greater details. But I'll say, off the bat: I'm sketching a vision, not delivering a solution. Overall I am optimistic

The aim of this talk is to sketch answers to the following:

- What is novel cryptography, in general and in specific?
- What does it mean to "verify" it?
- What role does verification currently hold in the evaluation of novel cryptography?
- How could this role be improved?

I intend to circle round these points in a zoomed-out sense, and then in greater details. But I'll say, off the bat: I'm sketching a vision, not delivering a solution. Overall I am optimistically pessimistic.

Overview	Problem	Details	Wrap-up
○●0000	ooooooo	000000	000
What is novel cryptogr	aphy?		

Novel cryptography refers to a cryptographic system whose design (even if not necessarily the underlying ideas) is newly proposed and to some degree malleable.

Overview		Details	
00000	0000000	000000	000

Definition

Novel cryptography refers to a cryptographic system whose design (even if not necessarily the underlying ideas) is newly proposed and to some degree malleable. A cryptosystem ceases to be *novel* in this sense when a version of it is standardised and widely accepted as definitive.

Overview		Details	
00000	000000	000000	000

Definition

Novel cryptography refers to a cryptographic system whose design (even if not necessarily the underlying ideas) is newly proposed and to some degree malleable. A cryptosystem ceases to be *novel* in this sense when a version of it is standardised and widely accepted as definitive. For instance, the Rijndael cryptosystem was once novel cryptography — but once it was standardised as AES it ceased to be so.

verview		Details	
0000	000000	000000	000

Definition

Novel cryptography refers to a cryptographic system whose design (even if not necessarily the underlying ideas) is newly proposed and to some degree malleable. A cryptosystem ceases to be *novel* in this sense when a version of it is standardised and widely accepted as definitive. For instance, the Rijndael cryptosystem was once novel cryptography — but once it was standardised as AES it ceased to be so.

We make this distinction because, as the design of novel cryptography is by definition malleable, one can meaningfully talk about proposing changes to it based on evaluations of its suitability etc.

verview		Details	
0000	000000	000000	000

Definition

Novel cryptography refers to a cryptographic system whose design (even if not necessarily the underlying ideas) is newly proposed and to some degree malleable. A cryptosystem ceases to be *novel* in this sense when a version of it is standardised and widely accepted as definitive. For instance, the Rijndael cryptosystem was once novel cryptography — but once it was standardised as AES it ceased to be so.

We make this distinction because, as the design of novel cryptography is by definition malleable, one can meaningfully talk about proposing changes to it based on evaluations of its suitability etc. (It's more than two decades too late to change the fundamental design of AES even if you wanted to.)

Overview			Details	
00000	000000		000000	000

A relevant example of a source of *novel cryptography* is the NIST Post-Quantum Standardization Process.

Overview		Details	
00000	000000	000000	000

A relevant example of a source of *novel cryptography* is the NIST Post-Quantum Standardization Process.

To briefly summarise:

 Current public-key cryptography is based on mathematical problems for which efficient quantum algorithms exist.

Overview		Details	
0000	000000	000000	000

A relevant example of a source of *novel cryptography* is the NIST Post-Quantum Standardization Process.

To briefly summarise:

- Current public-key cryptography is based on mathematical problems for which efficient quantum algorithms exist.
- A quantum computer might exist in the future, sufficiently soon that many believe we should switch to a new set of standardised algorithms that are resistant to quantum-attack.

Overview		Details	
0000	000000	000000	000

A relevant example of a source of *novel cryptography* is the NIST Post-Quantum Standardization Process.

To briefly summarise:

- Current public-key cryptography is based on mathematical problems for which efficient quantum algorithms exist.
- A quantum computer might exist in the future, sufficiently soon that many believe we should switch to a new set of standardised algorithms that are resistant to quantum-attack.
- The National Institute of Standards and Technology in the US has been holding an open process for the past 6 or 7 years with the aim of developing, selecting, and standardising a range of suitable candidates.

Overview		Details	
0000	000000	000000	000

A relevant example of a source of *novel cryptography* is the NIST Post-Quantum Standardization Process.

To briefly summarise:

- Current public-key cryptography is based on mathematical problems for which efficient quantum algorithms exist.
- A quantum computer might exist in the future, sufficiently soon that many believe we should switch to a new set of standardised algorithms that are resistant to quantum-attack.
- The National Institute of Standards and Technology in the US has been holding an open process for the past 6 or 7 years with the aim of developing, selecting, and standardising a range of suitable candidates.
- The entries for this process constitute novel cryptography: even though some involve old ideas, they are new proposals when taken as a whole.

Overview		Details	
000000	000000	000000	000

State of NIST Post-Quantum Cryptography Standardization

At the current stage in the process, NIST has produced some draft standards, re-opened a call for new proposals on digital signatures, and continues to evaluate some key encapsulation proposals.

Overview		Details	
000000	000000	000000	000

State of NIST Post-Quantum Cryptography Standardization

At the current stage in the process, NIST has produced some draft standards, re-opened a call for new proposals on digital signatures, and continues to evaluate some key encapsulation proposals.

So the process is highly advanced at this stage, but very much still active.

Overview		Details	
000000	000000	000000	000

State of NIST Post-Quantum Cryptography Standardization

At the current stage in the process, NIST has produced some draft standards, re-opened a call for new proposals on digital signatures, and continues to evaluate some key encapsulation proposals.

So the process is highly advanced at this stage, but very much still active.

Not every example of novel cryptography will be found in a submission to a government agency's standardization efforts... but it is a good example of the sort of thing we mean: and we can definitely ask questions like "is the NIST approach to calling for proposals and evaluating them effective"?

Overview	Problem	Details	Wrap-up
○○○○●○	0000000	000000	000
What is verification?			

The term *verification* and the act of *verifying* is here used in a slightly imprecise sense, to mean any (computer-aided) *production of evidence that a system meets the requirements it is designed to meet.*

Is verification the act of producing such evidence, or is it constructing an argument for the relevance of this evidence?

Overview ○○○○●○			Problem 0000000	Details 000000	Wrap-up 000
X A /I		~			

VVhat is verification?

The term *verification* and the act of *verifying* is here used in a slightly imprecise sense, to mean any (computer-aided) *production of evidence that a system meets the requirements it is designed to meet.*

Is verification the act of producing such evidence, or is it constructing an argument for the relevance of this evidence? We can use it in both ways, which is annoyingly ambiguous, but that's life.

Overview				Details	
000000			000000	000000	000
		~			

What is verification?

The term *verification* and the act of *verifying* is here used in a slightly imprecise sense, to mean any (computer-aided) *production of evidence that a system meets the requirements it is designed to meet.*

Is verification the act of producing such evidence, or is it constructing an argument for the relevance of this evidence? We can use it in both ways, which is annoyingly ambiguous, but that's life. One of the objects of this talk is to tease apart the distinction and to identify the reason the latter happens much less than the former.

Overview		Details	
0000 0	000000	000000	000

There is a healthy community of practitioners of "computer-aided cryptography" — the within-discipline term for "develop[ing] and appl[ying] formal, machine-checkable approaches to the design, analysis, and implementation of cryptography" [BBB⁺21], which broadly includes what we are calling verification here (and the terms are sometimes imprecisely used synonymously).

Overview		Details	
0000 0 0	000000	000000	000

There is a healthy community of practitioners of "computer-aided cryptography" — the within-discipline term for "develop[ing] and appl[ying] formal, machine-checkable approaches to the design, analysis, and implementation of cryptography" [BBB⁺21], which broadly includes what we are calling verification here (and the terms are sometimes imprecisely used synonymously).

Unfortunately, while there is a healthy community of practioners optimistically producing good papers advancing the state-of-the-art in this field, its adoption in industry and especially in wider cryptographic academia is minimal.

Overview		Details	
0000 0 0	000000	000000	000

There is a healthy community of practitioners of "computer-aided cryptography" — the within-discipline term for "develop[ing] and appl[ying] formal, machine-checkable approaches to the design, analysis, and implementation of cryptography" [BBB⁺21], which broadly includes what we are calling verification here (and the terms are sometimes imprecisely used synonymously).

Unfortunately, while there is a healthy community of practioners optimistically producing good papers advancing the state-of-the-art in this field, its adoption in industry and especially in wider cryptographic academia is minimal.

Not nothing.

Overview		Details	
0000 0 0	000000	000000	000

There is a healthy community of practitioners of "computer-aided cryptography" — the within-discipline term for "develop[ing] and appl[ying] formal, machine-checkable approaches to the design, analysis, and implementation of cryptography" [BBB⁺21], which broadly includes what we are calling verification here (and the terms are sometimes imprecisely used synonymously).

Unfortunately, while there is a healthy community of practioners optimistically producing good papers advancing the state-of-the-art in this field, its adoption in industry and especially in wider cryptographic academia is minimal.

Not nothing. But minimal.

Overview		Details	
0000 0 0	000000	000000	000

There is a healthy community of practitioners of "computer-aided cryptography" — the within-discipline term for "develop[ing] and appl[ying] formal, machine-checkable approaches to the design, analysis, and implementation of cryptography" [BBB⁺21], which broadly includes what we are calling verification here (and the terms are sometimes imprecisely used synonymously).

Unfortunately, while there is a healthy community of practioners optimistically producing good papers advancing the state-of-the-art in this field, its adoption in industry and especially in wider cryptographic academia is minimal.

Not nothing. But minimal.

I find this paradox very interesting, and one way or another have been picking at it throughout my PhD.

Overview	Problem	Details	Wrap-up
000000	●000000	000000	000
The state-of-the-art: o	verview		

I would say the absolute state-of-the-art in verifying novel cryptography — indeed, in producing high-assurance cryptography of any kind — is found in a recent paper from TCHES. [BABB⁺23]

Overview	Problem	Details	Wrap-up
000000	●oooooo	000000	000
The state-of-the-art: o	verview		

I would say the absolute state-of-the-art in verifying novel cryptography — indeed, in producing high-assurance cryptography of any kind — is found in a recent paper from TCHES. [BABB⁺23] This paper presents an end-to-end verification of Kyber, the only KEM selected so far for standardization by NIST.

Overview	Problem	Details	Wrap-up
oooooo	●000000	000000	000
The state-of-the-art.	verview		

I would say the absolute state-of-the-art in verifying novel cryptography — indeed, in producing high-assurance cryptography of any kind — is found in a recent paper from TCHES. [BABB⁺23] This paper presents an end-to-end verification of Kyber, the only KEM selected so far for standardization by NIST. It presents a formalisation of the Kyber specification, an implementation of Kyber in Jasmin, a language purpose-built for high-speed, high-assurance cryptography, an extraction of a model from this implementation into EasyCrypt, a tool built for verification of security proofs, and the necessary proofs required to show that these are all compatible with one another.

Overview	Problem	Details	Wrap-up
000000	●000000	000000	000
The state-of-the-art of	werview		

I would say the absolute state-of-the-art in verifying novel cryptography — indeed, in producing high-assurance cryptography of any kind — is found in a recent paper from TCHES. [BABB⁺23] This paper presents an end-to-end verification of Kyber, the only KEM selected so far for standardization by NIST. It presents a formalisation of the Kyber specification, an implementation of Kyber in Jasmin, a language purpose-built for high-speed, high-assurance cryptography, an extraction of a model from this implementation into EasyCrypt, a tool built for verification of security proofs, and the necessary proofs required to show that these are all compatible with one another.

And the implementation is performant. It's a tremendous achievement, in my view.

Overview	Problem	Details	Wrap-up
000000	●000000	000000	000
The state-of-the-art: of	werview		

I would say the absolute state-of-the-art in verifying novel cryptography — indeed, in producing high-assurance cryptography of any kind — is found in a recent paper from TCHES. [BABB⁺23] This paper presents an end-to-end verification of Kyber, the only KEM selected so far for standardization by NIST. It presents a formalisation of the Kyber specification, an implementation of Kyber in Jasmin, a language purpose-built for high-speed, high-assurance cryptography, an extraction of a model from this implementation into EasyCrypt, a tool built for verification of security proofs, and the necessary proofs required to show that these are all compatible with one another.

And the implementation is performant. It's a tremendous achievement, in my view. It also took nearly three years of work from more experts in the field than I can count on one hand and perhaps on two. They make a very persuasive case for the value of their HISC work, but undoubtedly it has great costs in time and resources.

Overview	Problem	Details	Wrap-up
000000	⊙●○○○○○	000000	000
The state-of-the-art: a	assurance case		

Ultimately, this work presents a host of verification artifacts — great chunks of it are "self-justifying", even, in the sense that they prove things about their own constructions.

Overview	Problem	Details	Wrap-up
000000	o●ooooo	000000	000
The state-of-the-art	ssurance case		

Ultimately, this work presents a host of verification artifacts — great chunks of it are "self-justifying", even, in the sense that they prove things about their own constructions. It is rational to believe their implementation is functionally correct, and obeys the security properties as they have modelled them.

Overview	Problem	Details	Wrap-up
000000	o●ooooo	000000	000
The state of the art a	ssurance case		

Ultimately, this work presents a host of verification artifacts — great chunks of it are "self-justifying", even, in the sense that they prove things about their own constructions. It is rational to believe their implementation is functionally correct, and obeys the security properties as they have modelled them.

But what does this mean? What should we take from this? The authors make no major attempt at linking any of their efforts to an assurance case for Kyber, or to Kyber's specific design to the extent it can now be changed.

Overview	Problem	Details	Wrap-up
000000	o●ooooo	000000	000
The state of the art a	surance case		

Ultimately, this work presents a host of verification artifacts — great chunks of it are "self-justifying", even, in the sense that they prove things about their own constructions. It is rational to believe their implementation is functionally correct, and obeys the security properties as they have modelled them.

But what does this mean? What should we take from this? The authors make no major attempt at linking any of their efforts to an assurance case for Kyber, or to Kyber's specific design to the extent it can now be changed.

Does this tell us *anything* about the implementations of Kyber that will actually be deployed in practice?

Overview	Problem	Details	Wrap-up
000000	○○●○○○○	000000	000
Street cryptography			

What does any of this mean to the cryptographer "on the street"?

Overview	Problem	Details	Wrap-up
000000	⊙⊙●oooo	000000	000
Street cryptography			

What does any of this mean to the cryptographer "on the street"? There were a score or more submissions to the original NIST call for proposals. There are many more which have been submitted to their new call for signature schemes.

Overview	Problem	Details	Wrap-up
000000	○○●0000	000000	000
Street cryptography			

What does any of this mean to the cryptographer "on the street"? There were a score or more submissions to the original NIST call for proposals. There are many more which have been submitted to their new call for signature schemes.

Nearly none of them make any attempt to use automated verification as part of the case for their scheme. Indeed, in many cases, even in the submission documents, the details of the assurance case for the submission is murky. It certainly isn't clear how the evidence from verification would fit in.

What does any of this mean to the cryptographer "on the street"? There were a score or more submissions to the original NIST call for proposals. There are many more which have been submitted to their new call for signature schemes.

Nearly none of them make any attempt to use automated verification as part of the case for their scheme. Indeed, in many cases, even in the submission documents, the details of the assurance case for the submission is murky. It certainly isn't clear how the evidence from verification would fit in. Clearly it is possible to evaluate these submissions. NIST have done so, painstakingly. But I think better is possible, and desirable.

Overview	Problem	Details	
000000	000000	000000	000

I have been a keen reader of the "pqc-forum" mailing list, administered by NIST, which is essentially the central location for public discussion of the NIST submissions.

Overview	Problem		Details	
000000	0000000		000000	000

I have been a keen reader of the "pqc-forum" mailing list, administered by NIST, which is essentially the central location for public discussion of the NIST submissions. Putting aside the small amount of spam messages, this is generally a great place to see what actually matters to the cryptographers working on this technology: what is discussed, what isn't, what provokes heated discussion and what does not.

Overview	Problem	Details	
	000000		

I have been a keen reader of the "pqc-forum" mailing list, administered by NIST, which is essentially the central location for public discussion of the NIST submissions. Putting aside the small amount of spam messages, this is generally a great place to see what actually matters to the cryptographers working on this technology: what is discussed, what isn't, what provokes heated discussion and what does not.

What I would say is that the more heated discussions here are often about the details of what statements mean, and whether they are validly interpreted. It seems to be the thing that trips people up the most.

Overview	Problem	Details	
000000	000000	000000	000

I have been a keen reader of the "pqc-forum" mailing list, administered by NIST, which is essentially the central location for public discussion of the NIST submissions. Putting aside the small amount of spam messages, this is generally a great place to see what actually matters to the cryptographers working on this technology: what is discussed, what isn't, what provokes heated discussion and what does not.

What I would say is that the more heated discussions here are often about the details of what statements mean, and whether they are validly interpreted. It seems to be the thing that trips people up the most. Arguments for or against a particular proposal, attacks on or refutation of attacks on those proposals: these are common. As the participants in these discussions are experts working at a high-level in this topic, the reasoning chains for particular claims sometimes remain implicit.

Overview	Problem	Details	
	000000		

I have been a keen reader of the "pqc-forum" mailing list, administered by NIST, which is essentially the central location for public discussion of the NIST submissions. Putting aside the small amount of spam messages, this is generally a great place to see what actually matters to the cryptographers working on this technology: what is discussed, what isn't, what provokes heated discussion and what does not.

What I would say is that the more heated discussions here are often about the details of what statements mean, and whether they are validly interpreted. It seems to be the thing that trips people up the most. Arguments for or against a particular proposal, attacks on or refutation of attacks on those proposals: these are common. As the participants in these discussions are experts working at a high-level in this topic, the reasoning chains for particular claims sometimes remain implicit.

This extends even to the draft standards themselves.

Overview	Problem	Details	Wrap-up
oooooo	○○○○●○○	000000	000
Structural change			

I claim: a structural change in how we reason about and evaluate novel cryptography is highly desirable. By 'a structural change', I mean a change to how the reasoning is presented and conceived.

Overview	Problem	Details	Wrap-up
000000	○○○○●○○	000000	000
Structural change			

I claim: a structural change in how we reason about and evaluate novel cryptography is highly desirable. By 'a structural change', I mean a change to how the reasoning is presented and conceived.

By reason about, I mean: we want the claims of provable security to be meaningful.

I claim: a structural change in how we reason about and evaluate novel cryptography is highly desirable. By 'a structural change', I mean a change to how the reasoning is presented and conceived.

By reason about, I mean: we want the claims of provable security to be meaningful.

By evaluate, I am talking about, for example, the way that submissions to the NIST process are evaluated against the 'Call for Proposals'. If one is going to pose a requirements document that some novel cryptography must meet, then the submission must include a clear explanation of how each required criteria is addressed, in a structured way that leaves no room for ambiguity.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	000
Seeing things as an ass	surance case		

Overview	Problem	Details	Wrap-up
000000	○○○○○●○	000000	000
Seeing things as an ass	surance case		

So: let us not start from scratch. There is a whole discipline about how to write a good assurance case, whole conferences, like this one, about how to create and use high-integrity software.

Overview	Problem	Details	Wrap-up
000000	○○○○○●○	000000	000
Seeing things as an ass	urance case		

So: let us not start from scratch. There is a whole discipline about how to write a good assurance case, whole conferences, like this one, about how to create and use high-integrity software. Essentially, the advantage to framing this as a formal assurance case is that we can then benefit from the fact that people have already spent a large amount of time thinking about what a good case looks like.

Overview	Problem	Details	Wrap-up
000000	○○○○○●○	000000	000
Seeing things as an ass	urance case		

So: let us not start from scratch. There is a whole discipline about how to write a good assurance case, whole conferences, like this one, about how to create and use high-integrity software. Essentially, the advantage to framing this as a formal assurance case is that we can then benefit from the fact that people have already spent a large amount of time thinking about what a good case looks like.

In particular, if you have a structured reasoning framework, it is a lot easier to work out how to integrate the results of formal verification into this framework. Without it, it can be nebulous — too often, I see people gesture towards the idea of formal proof with no indication as to what it supports, or what meaning it should have in context.

Overview	Problem	Details	Wrap-up
000000	○○0000●	000000	000
Bridging worlds			

We have the cryptography world, and we have the high-integrity software world. It is desirable in and of itself to bridge the two, but also it has the advantage of making it easier to connect the former to the 'computer-aided cryptography/formal verification' world. These worlds, empirically, are not currently that strongly linked in terms of the work of the latter finding practical use.

Overview	Problem	Details	Wrap-up
000000	○○0000●	000000	000
Bridging worlds			

We have the cryptography world, and we have the high-integrity software world. It is desirable in and of itself to bridge the two, but also it has the advantage of making it easier to connect the former to the 'computer-aided cryptography/formal verification' world. These worlds, empirically, are not currently that strongly linked in terms of the work of the latter finding practical use.

To reiterate: empirically just means 'looking at the revealed preferences derived from people's behaviour'.

Overview	Problem	Details	Wrap-up
000000	0000000	●00000	000
The meaning of formal	verification		

I think it is hard to explain what a verification actually means.

Overview	Problem	Details	Wrap-up
000000	ooooooo	●00000	000
The meaning of formal	verification		

Overview	Problem	Details	Wrap-up
000000	0000000	●00000	000
The meaning of formal	verification		

What is the meaning of any proof?

£,

Overview	Problem	Details	Wrap-up
000000	0000000	●00000	000
The meaning of formal	verification		

What is the meaning of any proof? The meaning of a pen-and-paper proof is not 'what is written in the theorem statement'. Indeed, it's well-known that even with pen-and-paper, the method of proof can contain insight into the structure of the objects being reasoned about.

Overview	Problem	Details	Wrap-up
000000	ooooooo	●00000	000
The meaning of formal	verification		

What is the meaning of any proof? The meaning of a pen-and-paper proof is not 'what is written in the theorem statement'. Indeed, it's well-known that even with pen-and-paper, the method of proof can contain insight into the structure of the objects being reasoned about. The meaning of a pen-and-paper proof derives from it being read and understood, and integrated into a wider understanding.

Overview	Problem	Details	Wrap-up
000000	ooooooo	●00000	000
The meaning of formal	verification		

What is the meaning of any proof? The meaning of a pen-and-paper proof is not 'what is written in the theorem statement'. Indeed, it's well-known that even with pen-and-paper, the method of proof can contain insight into the structure of the objects being reasoned about. THe meaning of a pen-and-paper proof derives from it being read and understood, and integrated into a wider understanding. What makes a valid proof? It depends who's asking.

Overview	Problem	Details	Wrap-up
000000	0000000	●00000	000
The meaning of formal	verification		

What is the meaning of any proof? The meaning of a pen-and-paper proof is not 'what is written in the theorem statement'. Indeed, it's well-known that even with pen-and-paper, the method of proof can contain insight into the structure of the objects being reasoned about. THe meaning of a pen-and-paper proof derives from it being read and understood, and integrated into a wider understanding. What makes a valid proof? It depends who's asking.

The observation I make is that this is no less true of formal verification. If a formal proof is to be regarded as a form of evidence for the security of an implementation or design, that evidence has meaning only alongside the claims it justifies and the argument which links them to a web of justified belief.

Overview	Problem	Details	Wrap-up
000000	ooooooo	o●oooo	000
Claims, argument, evid	ence: a reasoning frame	work	

After some time thinking about this problem — in the context of trying different methods of formal verification on a particular post-quantum proposal in order to evaluate the merits of various approaches — I came to the Claims, Argument, Evidence reasoning and communication framework pioneered by Adelard, now part of the NCC group.

Overview	Problem	Details	Wrap-up
000000	0000000	0●0000	000
Claims, argument, evid	dence: a reasoning frame	work	

After some time thinking about this problem — in the context of trying different methods of formal verification on a particular post-quantum proposal in order to evaluate the merits of various approaches — I came to the Claims, Argument, Evidence reasoning and communication framework pioneered by Adelard, now part of the NCC group.

Verification artifacts are often presented as both evidence and argument. However, often, the actual explanation of the link between "this verification has been performed" and a particular claim is missing or obscured.

Overview 000000		Problem 0000000	Details Wr ○●○○○○ ○	rap-up 00
Claims,	argument,	evidence:	a reasoning framework	

After some time thinking about this problem — in the context of trying different methods of formal verification on a particular post-quantum proposal in order to evaluate the merits of various approaches — I came to the Claims, Argument, Evidence reasoning and communication framework pioneered by Adelard, now part of the NCC group.

Verification artifacts are often presented as both evidence and argument. However, often, the actual explanation of the link between "this verification has been performed" and a particular claim is missing or obscured. It isn't unheard of to see a talismanic approach to verification — "oh, we should do some formal verification here, that will increase confidence in the scheme" — with no explanation as to how or why this will occur.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	000
Dangling assurance cas	ses		

I argue that what is really happening when a body like NIST puts forth a call for proposals — whenever there is a provocation towards cryptographic innovation — is that a "dangling assurance case" is being created.

Overview	Problem	Details	Wrap-up
000000	ooooooo	00●000	000
Dangling assurance cas	ies		

I argue that what is really happening when a body like NIST puts forth a call for proposals — whenever there is a provocation towards cryptographic innovation — is that a "dangling assurance case" is being created.

It isn't quite correct to call this a specification — or if it is one, it is a very general specification. What is present is a host of unjustified claims and unresolved defeaters, to use the language of Assurance 2.0 [BR23].

Overview	Problem	Details	Wrap-up
000000	ooooooo	00●000	000
Dangling assurance cas	es		

I argue that what is really happening when a body like NIST puts forth a call for proposals — whenever there is a provocation towards cryptographic innovation — is that a "dangling assurance case" is being created.

It isn't quite correct to call this a specification — or if it is one, it is a very general specification. What is present is a host of unjustified claims and unresolved defeaters, to use the language of Assurance 2.0 [BR23].

The case for a particular piece of novel cryptography is an answer to this dangling case — an assertion that there is a specific fufillment of the problem it poses. In this perspective, a good scheme is precisely one which wholly justifies its fufillment of unjustified claims, and resolves satisfactorily any potential defeaters.
Overview	Problem	Details	Wrap-up
000000	0000000	000●00	000

Overview	Problem	Details	Wrap-up
000000	0000000	ooo●oo	000

Overview	Details	
	000000	

Overview	Details	
	000000	

Overview	Problem	Details	Wrap-up
000000	0000000	000●00	000

CONFERENCE

Overview 000000			Problem 0000000		Details 000000	Wrap-up 000
	•			5		

Overview	Problem	Details	Wrap-up
000000	0000000	ooo●oo	000

Overview	Problem	Details	Wrap-up
000000	0000000	000●00	000

Overview	Problem	Details	Wrap-up
000000	0000000	000●00	000
	···· •		

HISC HIEF INTEGRITY SOFTWARE CONFERENCE OUT 17.300

Overview	Problem	Details	Wrap-up
000000	0000000	000●00	000

Overview 000000			Problem 0000000		Details 000000	Wrap-up 000
	•			5		

Overview		Details	
000000	0000000	000000	000

Overview	Problem	Details	Wrap-up
000000	0000000	0000●0	000
Who is responsible?			

Essentially this is a sketch of a way forward.

Overview	Problem	Details	Wrap-up
000000	ooooooo	000000	000
Who is responsible?			

Essentially this is a sketch of a way forward. The current way of doing things is fine.

Overview	Problem	Details	Wrap-up
000000	0000000	0000●0	000
Who is responsible?			

Overview	Problem	Details	Wrap-up
000000	0000000	oooo●o	000
Who is responsible?			

Who is to do this? In a sense it will only happen if standards bodies, government agencies etc. are interested in such an approach.

Overview	Problem	Details	Wrap-up
000000	0000000	0000●0	000
Who is responsible?			

Who is to do this? In a sense it will only happen if standards bodies, government agencies etc. are interested in such an approach. I believe the NCSC in the UK is pursuing the promotion of what it calls Principles Based Assurance. This seems to me to be interesting and useful. I don't know to what degree it would be adapatable for these purposes! But I am intrigued.

Overview	Problem	Details	Wrap-up
000000	0000000	0000●0	000
Who is responsible?			

Who is to do this? In a sense it will only happen if standards bodies, government agencies etc. are interested in such an approach. I believe the NCSC in the UK is pursuing the promotion of what it calls Principles Based Assurance. This seems to me to be interesting and useful. I don't know to what degree it would be adapatable for these purposes! But I am intrigued.

I argue "If you build it, they will come" — if the expectations and standards are clear, then people will adapt to them. I think a rules-based, principle-based, evidence-based approach to novel cryptography assurance cases is sensible and possible — but someone needs to light the way.

Overview	Problem	Details	Wrap-up
000000	0000000	00000●	000
CAE Tooling & Thoug	hts		

I have used Adelard's ACSE a little. Seems good — but I note that academics are often resistant to the use of proprietary software — and academics are often the people creating novel cryptography.

Overview	Problem	Details	Wrap-up
000000	0000000	00000●	000
CAF Tooling & Thoug	hts		

I have used Adelard's ACSE a little. Seems good — but I note that academics are often resistant to the use of proprietary software — and academics are often the people creating novel cryptography. There are other tools out there for other forms of Goal-Structuring Notation. Which ones are good? Which ones are actually reasonable to ask people to adopt?

Overview	Problem	Details	Wrap-up
000000	0000000	00000●	000
CAE Tooling & Thoug	hts		

I have used Adelard's ACSE a little. Seems good — but I note that academics are often resistant to the use of proprietary software — and academics are often the people creating novel cryptography. There are other tools out there for other forms of Goal-Structuring Notation. Which ones are good? Which ones are actually reasonable to ask people to adopt?

Security arguments in cryptography often use arguments of the form 'P. If not-Q then not-P. Thus, Q.' (The so-called proof by contrapositive.)

Overview	Problem	Details	Wrap-up
000000	0000000	00000●	000
CAE Tooling & Thoug	hts		

I have used Adelard's ACSE a little. Seems good — but I note that academics are often resistant to the use of proprietary software — and academics are often the people creating novel cryptography. There are other tools out there for other forms of Goal-Structuring Notation. Which ones are good? Which ones are actually reasonable to ask people to adopt?

Security arguments in cryptography often use arguments of the form 'P. If not-Q then not-P. Thus, Q.' (The so-called proof by contrapositive.) This argument is often fairly non-constructive in its form: secretly it uses, I think, the law of the excluded middle.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	●00
A little about me			

Just to give you some context about where I'm coming from in all this:

Overview	Problem	Details	Wrap-up
000000	0000000	000000	●00
A little about me			

Just to give you some context about where I'm coming from in all this: I'm near the end of a PhD at Royal Holloway's Centre for Cyber Security in the Everyday. I have two supervisors: Dr Rachel Player within the college handles the cryptography end of things, and Dr Martin Brain of City University has been my route into the verification community.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	●00
A little about me			

Just to give you some context about where I'm coming from in all this: I'm near the end of a PhD at Royal Holloway's Centre for Cyber Security in the Everyday. I have two supervisors: Dr Rachel Player within the college handles the cryptography end of things, and Dr Martin Brain of City University has been my route into the verification community.

I've spent my PhD approaching the verification of different aspects (mainly functional correctness) of Classic McEliece with different tools. I'm now writing up case studies and drawing conclusions into my thesis, which was the motivation of the thought that sparked this talk.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	○●○
The future			

I'm considering submitting something on this to the upcoming NIST conference if I can get my thoughts together in time. I'm interested to hear more about any prior work which anyone is aware of using CAE arguments in a cryptographic context.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	0●0
The future			

I'm considering submitting something on this to the upcoming NIST conference if I can get my thoughts together in time. I'm interested to hear more about any prior work which anyone is aware of using CAE arguments in a cryptographic context.

I should be finishing my PhD in Spring 2024, and I'm looking for work in this area in academia or industry.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	○●○
The future			

I'm considering submitting something on this to the upcoming NIST conference if I can get my thoughts together in time. I'm interested to hear more about any prior work which anyone is aware of using CAE arguments in a cryptographic context.

I should be finishing my PhD in Spring 2024, and I'm looking for work in this area in academia or industry.

I can be contacted on wren.robson@gmail.com if you have further comment on anything I've talked about today.

Overview	Problem	Details	Wrap-up
000000	0000000	000000	00●
Bibliography			

- José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, and et al.
 Formally verifying kyber: Episode iv: Implementation correctness.
 IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(3):164–193, Jun. 2023.
- Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno.

SoK: Computer-aided cryptography.

In *2021 IEEE Symposium on Security and Privacy (SP)*, pages 777–795. IEEE, 2021.

Robin Bloomfield and John Rushby.

Assessing confidence with assurance 2.0, 2023.

