Hybrid Al for Building Explainable, Robust and Transparent Systems

The Black-Box Problem: much of recent progress in Al is driven by black-box machine learning models. How can we make sure that they learnt plausible patterns?
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Hybrid Al: combine different Al and algorithmic techniques to combine the flexibility and speed of machine learning with the reliability and transparency of symbolic methods.
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* Sepallength<2.25 and Petallength in (2.8, 3.19] is probably sufficient for Versicolor
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