
Introduction
Context: C is a very popular language in high-integrity systems
Danger: The language is very bug prone
Solution: Fuzz-testing
Bottleneck: Setup is manual/time-consuming/error prone

Project
Goal: To create an automatic fuzz-testing pipeline for C

Workflow
1. Analyse
2. Generate fuzz-test harness
3. Generate starting corpus
4. Fuzz

Challenges
● C oracles - use sanitizers
● Safe generic serialisation - FlatBuffers
● Ambiguity in C syntax - config file
● Automatic complex types - “recipe” system,

Y-combinator

Automating fuzz-testing for C projects

Manual workflow
Analyse -> Generate test harness -> Generate starting corpus -> Build

C is a very popular language in high-integrity software. Yet, the language
is very bug-prone if used incorrectly

Fuzz-testing is one way to discover vulnerabilities and unhandled failures.
Although, the technique is difficult and requires significant effort to set it up
effectively since each fuzz-target in an SUT must be manually set up

Background

To automate the process of fuzz-testing a C project’s public API

Why?
● Reduce the skill barrier and time/labour cost of setting up fuzzing
● Increase scalability and code coverage
● Provide consistent and reliable results by avoiding human error

Aim

● C has ambiguous syntax
● Pointers and arrays cannot be distinguished

● Associating arrays and lengths is just a convention
● Conventions cannot be inferred from the syntax

● All this must be declared for effective fuzzing

Language Ambiguity

● Unlike unit testing, which checks for expected behaviour, fuzz testing checks for no unexpected
behaviour

● There is no oracle for the lack of unexpected behaviour so the crash oracle is used instead
● For C, however, the lack of runtime checks leaves the crash oracle unsuitable as many instances of

undefined behaviour do not cause the program to crash

● Instrumenting the SUT with code sanitizers (ASan, MSan, UBSan, etc.) strengthens our test oracle
● Some common vulnerabilities now detectable by the stronger oracle are buffer overflows and

use-after-frees via ASan, uninitialised variables via MSan, and null-pointer dereferences via UBSan

The Test Oracle Problem

● A good starting corpus is small, valid, and diverse in order to maximise code coverage

● Without statically analysing the body of each SUT, this is a difficult problem

● The automated starting corpus generation considers every combination of “interesting” initial value for
each parameter to the SUT

● “Interesting” meant boundaries values (e.g. INT_MIN, INT_MAX), special values (e.g., NaN, Infinity),
and a few random values

Starting Corpus Generation

● The fuzz-engine provides a binary blob to the fuzz-test harness, but the SUT is a C function so it
needs structured parameters passed (“marshalled”) to it

● A schema is generated for each SUT to model its parameters for a (de)serialisation library

● This schema can also be used to validate the provided binary before deserialisation to ensure
crashes only happen in the SUT and not in the fuzz-test harness

● A high degree of generality was required to support C’s type system so a templating system with
“recipes” for each type is used to allow for aggregate types and recursive types

Generic Marshalling

Workflow

Identify
fuzzable functions

Generate
fuzz-test harnesses

Generate
starting corpora

Build SUT and
generated files

Daniel Wait
daniel.wait22@imperial.ac.uk

mentored by Paul Butcher
butcher@adacore.com

and Joao Azevedo
azevedo@adacore.com

C Project

AFL++libFuzzer

 my_code.h

 // array pointer with its length
 int sum_array(int *arr, int n);

 // unrelated pointer and value
 int set_reg(int *reg, int x);

Daniel Wait
daniel.wait22@imperial.ac.uk

mentored by Paul Butcher
butcher@adacore.com

and João Azevedo
azevedo@adacore.com

