AdaCore Automating fuzz-testing for C projects

Daniel Wait mentored by Paul Butcher and Joao Azevedo
daniel.wait22@imperial.ac.uk butcher@adacore.com azevedo@adacore.com

Background ™ m

C is a very popular language in high-integrity software. Yet, the language To automate the process of fuzz-testing a C project’s public API
IS very bug-prone if used incorrectly

Why?
Fuzz-testing is one way to discover vulnerabilities and unhandled failures. e Reduce the skill barrier and time/labour cost of setting up fuzzing
Although, the technique is difficult and requires significant effort to set it up e |ncrease scalability and code coverage
effectively since each fuzz-target in an SUT must be manually set up e Provide consistent and reliable results by avoiding human error

_ NG

Language Ambiguity \
@)

e C has ambiguous syntax my_code.h
e Pointers and arrays cannot be distinguished

// array pointer with its length
¢ Project e Associating arrays and lengths is just a convention int sum_array(int *arr, int n);
rojec e Conventions cannot be inferred from the syntax ,
// unrelated pointer and value
: . . int set_reg(int *reg, int Xx);
\T e All this must be declared for effective fuzzing G 9(J)
_ oy
Identify

fuzzable functions

|

Generate
fuzz-test harnesses

|

Generate
starting corpora

Generic Marshalling \

e The fuzz-engine provides a binary blob to the fuzz-test harness, but the SUT is a C function so it
needs structured parameters passed (“marshalled”) to it

e A schema is generated for each SUT to model its parameters for a (de)serialisation library

e This schema can also be used to validate the provided binary before deserialisation to ensure
crashes only happen in the SUT and not in the fuzz-test harness

e A high degree of generality was required to support C’s type system so a templating system with
\“reoipes” for each type is used to allow for aggregate types and recursive types J

Starting Corpus Generation \

e A good starting corpus is small, valid, and diverse in order to maximise code coverage

e \Without statically analysing the body of each SUT, this is a difficult problem

e The automated starting corpus generation considers every combination of “interesting” initial value for
each parameter to the SUT

e “Interesting” meant boundaries values (e.g. INT_MIN, INT_MAX), special values (e.g., NaN, Infinity),

\and a few random values /

The Test Oracle Problem \

Build SUT and
generated files

e Unlike unit testing, which checks for expected behaviour, fuzz testing checks for no unexpected
behaviour

e There is no oracle for the lack of unexpected behaviour so the crash oracle is used instead
e For C, however, the lack of runtime checks leaves the crash oracle unsuitable as many instances of
undefined behaviour do not cause the program to crash

libFuzzer AFL ++ e Instrumenting the SUT with code sanitizers (ASan, MSan, UBSan, etc.) strengthens our test oracle
\ e Some common vulnerabilities now detectable by the stronger oracle are buffer overflows and
' / \use-after-frees via ASan, uninitialised variables via MSan, and null-pointer dereferences via UBSan/

‘______________________’

