Code-centered kernel compartmentalization in CheriBSD

Konrad Witaszczyk, Department of Computer Science and Technology, University of Cambridge, November 2025

The CHERI-extended CheriBSD kernel based on the FreeBSD kernel, as other monolithic kernels, consists of
millions of trusted lines of code that are compiled into the kernel binary or separate kernel modules. The kernel binary

itself includes code from over 1,700 ELF object files linked together. In this research, | explore compartmentalization
of the CheriBSD kernel that focuses on its code (Figure 1) and aims to split the kernel code into compartments that
can call functions of other compartments only if a system-defined policy allows such a call.

/Iboot/kernel/zlib.ko

/boot/kernel/kernel Iboot/kernel/zlib.ko

: Iboot/kernel/kernel /boot/kernel/zlib.ko] Iboot/kernel/kernel
: exception handler E : compartment
| vector o o allocator
1 O i : : = i
, : e zlib] 5 | exception handler
: exception handler g kernel module o § vector
: per-CPU context L] % per-CPU context
. D handler 1o c handler
. = |)
: Q] X
. =< crypto L]
: Golmineie=telr . 1| | £ |exception handler
: V|| E
1 1 1 t t
: o 8 crypto
e . 0| E
(a) 0 compartments: trusted kernel; 8 compressor
trusted zlib and other kernel modules (*.ko).]
' [0
I X

(b) 5 compartments: trusted executive; e o o o o o e m e E E m mm m e m e e mmm————a
untrusted rest of kernel; 3 untrusted zlib kernel module.

trusted component

untrusted component

load/unload = compartment K load/unload :

y routines: = ® allocator ' routines :
.C ;! =) 1
I_) lib q p o 5 | exception handler |
iB_MOoC.C 1 11 | § vector k. c. allocator :

o % per-CPU context : !

allocator: b = handler K c. | compression !

k.c = Q algorithms :
L» zcalloc.c = :
compression | 1| |k. c. lexception handler :
algorithms: = ;

—>| deflatec ||' || k. c. crypto :

k.c = :
> inflate.c = :

. 1| k. c. compressor |

—> L :

' ke !

(c) compartments optimised for security and performance:
trusted executive; separated untrusted kernel subsystems
and modules.

code-centered kernel compartments

Figure 1. Incremental code-centered compartmentalization approach in a monolithic kernel.

Static and dynamic linking for compartmentalization

The kernel and kernel modules are statically linked into ELF
binaries that consist of object files grouped into compartments
according to a JSON policy (Figure 2). A module without an
explicit policy is linked into a single compartment by default.
When relocating symbols at run time, the dynamic kernel linker
wraps them with trampolines that implement compartment
switching (Figure 3).

Optimal compartment boundaries

The security and performance characteristics of the system can
significantly differ depending on the choice of the Trusted
Computing Base and untrusted compartment boundaries in a
policy. The policy must not separate from the TCB symbols that
are required by trampolines, e.g. locking primitives.

Thread executing
untrusted code in
the compressor kernel subsystem |
| trampoline

Thread executing
untrusted code in
the zlib kernel module

Thread executing
trusted trampoline code

code

zlib_write() in zlib.ko

2%

I
compressor_write() in kernel |
|

registers code msr rcsp_el0, cn code registers

blrr cn

blr | 1 pcc
csp

pcc ' br —
csp

I

|

I registers
| L}

I

I

pcc

USR5 csp

rcspi.‘elo rcsp _ el0
: thread structure /

stack

stack stack «<---

\/\J\

I
I
I
|
I
I
I
|
I
I
I
I
I
I
I
I
|
I
]
I
|

Figure 3. An example function call between compartments
using a trampoline.

Contact Konrad.Witaszczyk@cl.cam.ac.uk

{
"compartments": {
"module": { "files": ["zlib mod.o"] },
"allocator": { "files": ["zcalloc.o0"] },
"z1ib": { "files": ["deflate.o", ...] }
}
}

Figure 2. An example compartmentalization policy for the zlib
kernel module. Case b in Figure 1 makes use of this policy.

Supported features

The current prototype (Figure 4) can handle complex workflows
on Arm Morello, e.g. the graphics stack (KDE Plasma 5) using
DRM and GPU drivers. A compartmentalized kernel can be
used together with library-based compartmentalization and
temporal safety in the user space. DTrace support is currently
being explored.

kw543@kernel-cl1l8n-demo:~ $ uname -i

GENERIC-MORELLO-PURECAP-COMPARTMENTS

kw543@kernel-c18n-demo:~ $ kldstat

Id Refs Address Size Name

28 OxffffOOOCO0000000 98d93b0 kernel

Oxffff00019e400000 3b600 if rtwn usb.ko
Oxffff00019e4a5000 c7000 wlan.ko
Oxffff00019belaloo 47000 rtwn.ko
Oxffff00019bf61000 25000 uhid.ko
Oxffff00019bTab000 28000 ums.ko
Oxffff00019c0O0000 26000 wmt.ko

; Oxffff00019c026000 23000 mac ntpd.ko

kw543@kernel-c18n-demo:~ $ sysctl security.cheri.lib based c18n default

s security.cheri.lib based c18n default: 1

- kw543@kernel-c18n-demo:~ $ sysctl security.cheri.runtime revocation default
security.cheri.runtime revocation default: 1
kw543@kernel-c18n-demo:~ $ |

2 H € 4

Figure 4. Compartmentalized CheriBSD kernel running on
the Arm Morello platform.

11:47
B ~ jinovzos K

Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-24-C-B047 (“DEC”) as part
of the 120 CPM research program. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or

the U.S. Government.

