
Code-centered kernel compartmentalization in CheriBSD
Konrad Witaszczyk, Department of Computer Science and Technology, University of Cambridge, November 2025

The CHERI-extended CheriBSD kernel based on the FreeBSD kernel, as other monolithic kernels, consists of 
millions of trusted lines of code that are compiled into the kernel binary or separate kernel modules. The kernel binary 
itself includes code from over 1,700 ELF object files linked together. In this research, I explore compartmentalization 
of the CheriBSD kernel that focuses on its code (Figure 1) and aims to split the kernel code into compartments that 
can call functions of other compartments only if a system-defined policy allows such a call.

Konrad.Witaszczyk@cl.cam.ac.ukContact

Static and dynamic linking for compartmentalization

The kernel and kernel modules are statically linked into ELF 
binaries that consist of object files grouped into compartments 
according to a JSON policy (Figure 2). A module without an 
explicit policy is linked into a single compartment by default. 
When relocating symbols at run time, the dynamic kernel linker 
wraps them with trampolines that implement compartment 
switching (Figure 3).

Figure 1. Incremental code-centered compartmentalization approach in a monolithic kernel.

Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-24-C-B047 (“DEC”) as part 
of the I2O CPM research program. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or 
the U.S. Government.

Optimal compartment boundaries

The security and performance characteristics of the system can 
significantly differ depending on the choice of the Trusted 
Computing Base and untrusted compartment boundaries in a 
policy. The policy must not separate from the TCB symbols that 
are required by trampolines, e.g. locking primitives.

{
"compartments": {

"module": { "files": ["zlib_mod.o"] },
"allocator": { "files": ["zcalloc.o"] },
"zlib": { "files": ["deflate.o", ...] }

}
}

Figure 2. An example compartmentalization policy for the zlib 
kernel module. Case b in Figure 1 makes use of this policy.

Figure 4. Compartmentalized CheriBSD kernel running on 
the Arm Morello platform.

Supported features

The current prototype (Figure 4) can handle complex workflows 
on Arm Morello, e.g. the graphics stack (KDE Plasma 5) using 
DRM and GPU drivers. A compartmentalized kernel can be 
used together with library-based compartmentalization and 
temporal safety in the user space. DTrace support is currently 
being explored.

Figure 3. An example function call between compartments 
using a trampoline.


